Many past researchers have ignored the multiobjective nature of the transit route network design problem (TrNDP), recognizing user or operator cost as their sole objective. The main purpose of this study is to identify the inherent conflict among TrNDP objectives in the design process. The conventional scheme for transit route design is addressed. A route constructive genetic algorithm is proposed to produce a vast pool of candidate routes that reflect the objectives of design, and then, a set covering problem (SCP) is formulated for the selection stage. A heuristic algorithm based on a randomized priority search is implemented for the SCP to produce a set of nondominated solutions that achieve different tradeoffs among the identified objectives. The solution methodology has been tested using Mandl's benchmark network problem. The test results showed that the methodology developed in this research not only outperforms solutions previously identified in the literature in terms of strategic and tactical terms of design, but it is also able to produce Pareto (or near Pareto) optimal solutions. A real-scale network of Rivera was also tested to prove the proposed methodology's reliability for largerscale transit networks. Although many efficient meta-heuristics have been presented so far for the TrNDP, the presented one may take the lead because it does not require any weight coefficient calibration to address the multi-objective nature of the problem.Index Terms-Meta-heuristics, transit route network design, multi-objective problem, set covering problem.
The core of artificial intelligence and machine learning is to get computers to solve problems automatically.One of the great tools that attempt to achieve that goal is Genetic Programming (GP). As alternatives to GP, Scatter Programming (SP) is proposed in this paper. One of the main features of SP is to exploit local search in order to overcome some recently addressed drawbacks of GP, especially its highly disruption of its main operations; crossover and mutation. This work shows that SP has promising performance and results in solving machine learning problems.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.