The theory of two-phase immiscible flow in porous media is based on the extension of single phase models through the concept of relative permeabilities. It mimics Darcy’s law for a fixed average saturation through the introduction of saturation-based permeabilities to model the momentum exchange between the phases. In this paper, we present a model of two-phase flow, based on the extension of Darcy’s law including the effect of capillary pressure, but considering in addition the coupling between the phases modeled through flow cross-terms. In this work, we extend the Buckley–Leverett theory to the subsequent model, and provide numerical experiments shading the light on the effect of the coupling cross-terms in comparison to the classical Darcy’s approach.
This paper is dedicated to the modeling, analysis, and numerical simulation of a two-phase non-Darcian flow through a porous medium with phase-coupling. Specifically, we introduce an extended Forchheimer–Darcy model where the interaction between phases is taken into consideration. From the modeling point of view, the extension consists of the addition to each phase equation of a term depending on the gradient of the pressure of the other phase, leading to a coupled system of differential equations. The obtained system is much more involved than the classical Darcy system since it involves the Forchheimer equation in addition to the Darcy one. This model is more appropriate when there is a substantial difference between the phases’ velocities, for instance in the case of gas/water phases, and applications in oil recovery using gas flooding. Based on the Buckley–Leverett theory, including capillary pressure, we derive an explicit expression of the phases’ velocities and fractional water flows in terms of the gradient of the capillary pressure, and the total constant velocity. Various scenarios are considered, and the respective numerical simulations are presented. In particular, comparisons with the classical models (without phase coupling) are provided in terms of breakthrough time among others. Eventually, we provide a post-processing method for the derivation of the solution of the new coupled system using the classical non-coupled system. This method is of interest for industry since it allows for including the phase coupling approach in existing numerical codes and software (designed for solving classical models) without major technical changes.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.