DOI to the publisher's website.• The final author version and the galley proof are versions of the publication after peer review.• The final published version features the final layout of the paper including the volume, issue and page numbers.
Link to publication
General rightsCopyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.• Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal.If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the "Taverne" license above, please follow below link for the End User Agreement:
Precipitated calcium carbonate (PCC) filler is used in many industrial products like constructions, plastics, pharmaceutics, etc. In this study producing cationic precipitated calcium carbonate filler for paper industry was investigated. Hence, a cationic polyacrylamide and cationic corn starch have been incorporated into the PCC particles to produce a modified filler with cationic structure and improved hydrogen bonding ability with cellulose fibers. According to the FESEM and XRD results, cubic-like fillers with prominently calcite polymorph and a slight amount of aragonite were successfully produced from the industrial burnt lime using carbonation process. The presence of organic substances in the structure of the modified samples was confirmed by FT-IR analysis. Besides, based on the FESEM results, filler morphology and particle size could be affected by the polymer content. In conclusion, introducing cationic groups to mineral fillers could be considered as a possible strategy to overcome some detrimental effects of using mineral fillers in paper products.
In the present work, the production of dissolving pulp from fast growing 30-year-old local plantation aspen was investigated. The mill-made chips of aspen (Populus deltoides) after being pre-hydrolyzed with water at 170 ºC, were pulped with a soda-AQ pulping process at a kappa number of 15. It was further delignified to a kappa number of 9.2 using a single stage oxygen delignification and bleached with a D0ED1 bleaching sequence at different kappa factor. The pulp viscosity was increased at higher brightness and similar α-cellulose when the kappa factor was increased from 0.30 to 0.45 in the D0 stage of the D0ED1 bleaching sequence, due to higher lignin dissolution and more fiber purification. The results showed that pre-hydrolyzed soda-AQ dissolving pulp can be made from Populus deltoides at a high level of alpha-cellulose content and acceptable levels of brightness and viscosity by means of proper control and optimization of pre-hydrolysis, pulping, and oxygen pretreatment conditions, and an optimized DED bleaching sequence.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.