Localization is the fundamental problem of intelligent vehicles. For a vehicle to autonomously operate, it first needs to locate itself in the environment. A lot of different odometries (visual, inertial, wheel encoders) have been introduced through the past few years for autonomous vehicle localization. However, such odometries suffers from drift due to their reliance on integration of sensor measurements. In this paper, the drift error in an odometry is modeled and a Drift Covariance Estimation (DCE) algorithm is introduced. The DCE algorithm estimates the covariance of an odometry using the readings of another on-board sensor which does not suffer from drift. To validate the proposed algorithm, several real-world experiments in different conditions as well as sequences from Oxford RobotCar Dataset and EU long-term driving dataset are used. The effect of the covariance estimation on three different fusion-based localization algorithms (EKF, UKF and EH-infinity) is studied in comparison with the use of constant covariance, which were calculated based on the true variance of the sensors being used. The obtained results show the efficacy of the estimation algorithm compared to constant covariances in terms of improving the accuracy of localization.
In this paper, a generic multi-sensor fusion framework is developed for the localization of intelligent vehicles and mobile robots. The localization framework is based on moving horizon estimation (MHE). Unlike the commonly used probabilistic filtering algorithms – for example, extended Kalman filter (EKF) and unscented Kalman filter (UKF) – MHE relies on solving successive least squares optimization problems over the innovation of multiple sensors’ measurements and a specific estimation horizon. In this paper, we present an efficient and generic multi-sensor fusion scheme, based on MHE. The proposed multi-sensor fusion scheme is capable of operating with different sensors’ rates, missing measurements, and outliers. Moreover, the proposed scheme is based on a multi-threading architecture to reduce its computational cost, making it more feasible for practical applications. The MHE fusion method is tested using simulated data as well as real experimental data sequences from an intelligent vehicle and a mobile robot combining measurements from different sensors to get accurate localization results. The performance of MHE is compared against that of UKF, where the MHE estimation results show superior performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.