Direct Water Injection (DWI) is commonly used in many nitrogen oxides (NOx) emissions control applications due to its effect to reduce the adiabatic flame temperature. In this paper an experimental test rig is designed to study the effect of water injection spray inside a simulated gas turbine combustor from the gas fuel. The practical work introduced by the chemical reaction methodology followed by the experiment which was presented and discussed carefully. Results are obtained in term of the exhaust gas temperature and different injection parameters including position, direction and fuel mass flow rate on the nitrogen oxide emission value in PPM (Parts per Million) at different conditions. The results showed that the best water injection effect was obtained at 45° degree inside the primary air zone. Injection location has a major effect on the NOx reduction as the best injected location is the Primary air zone compared with the direct fuel nozzle tip due to the increase of the water droplets residence time inside the combustor and perform a vortex that will affect the reduction of exhaust gas temperature and NOx emission respectively. The huge impact was observed at LPG (Liquefied Petroleum gas) flowrate 2.7L/min and water to fuel ratio about 0.4 as the NOx value was decreased about 73% from almost 381 PPM to 73 PPM. The chemical reaction arrangement order methodology presented good agreement with the experimental results at different fuel flow rate and equivalence ratio. The chemical Reaction equations were implemented to calculate the different adiabatic flame temperatures which is experimentally known as the exhaust gas temperature and impacted directly the NOx emission results.
We experimentally compare the effect of different direct water and steam injection tilting angles on NOx emission values. The results showed that water and steam injection are effective tools to reduce NOx emission by 70% and 57% respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.