Plug-in Electric Vehicle (PEV) user charging behavior has a significant influence on a distribution network and its reliability. Generally, monitoring energy consumption has become one of the most important factors in green and micro grids; therefore, predicting the charging demand of PEVs (the energy consumed during the charging session) could help to efficiently manage the electric grid. Consequently, three machine learning methods are applied in this research to predict the charging demand for the PEV user after a charging session starts. This approach is validated using a dataset consisting of seven years of charging events collected from public charging stations in the state of Nebraska, USA. The results show that the regression method, XGBoost, slightly outperforms the other methods in predicting the charging demand, with an RMSE equal to 6.68 kWh and R2 equal to 51.9%. The relative importance of input variables is also discussed, showing that the user’s historical average demand has the most predictive value. Accurate prediction of session charging demand, as opposed to the daily or hourly demand of multiple users, has many possible applications for utility companies and charging networks, including scheduling, grid stability, and smart grid integration.
Humans spend more than 90% of their day in buildings, where their health and productivity are demonstrably linked to thermal comfort. Building thermal comfort systems account for the largest share of U.S energy consumption. Despite this high-energy cost, due to building design complexity and the variety of building occupant needs, addressing thermal comfort in buildings remains a difficult problem. To overcome this challenge, this paper presents an Internet of Things (IoT) approach to efficiently model and control comfort in buildings. In the model phase, a method to access and exploit wearable device data to build a personal thermal comfort model has been presented. Various supervised machine-learning algorithms are evaluated to produce accurate personal thermal comfort models for each building occupant that exhibit superior performance compared to a general model for all occupants. The developed comfort models were used to simulate an intelligent comfort controller that uses the particle swarm optimization(PSO) method to search for optimal control parameter values to achieve maximum comfort. Finally, a framework for experimental validation of the new proposed comfort controller that interactively works with the HVAC element has been introduced.
This work investigates the computational potential of microelectromechanical system (MEMS) networks. In these networks, each MEMS device retains the memory of past inputs through bistability and hysteresis and receives a weighted excitatory or inhibitory feedback from other devices within the network. These interactions are shown to change the dynamics of a small network of MEMS devices to produce selective switching and limit cycles through Hopf bifurcations. Furthermore, we show that interactions within large, trained MEMS networks can be used to perform computational tasks such as object classification and tracking.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.