Alzheimer's disease (AD) is a progressive degenerative brain disorder affecting memory, thinking, behaviour and emotion. It is the most common form of dementia and a big social problem in western societies. The analysis of brain activity may help to diagnose this disease. Changes in entropy methods have been reported useful in research studies to characterize AD. We have recently proposed dispersion entropy (DisEn) as a very fast and powerful tool to quantify the irregularity of time series. The aim of this paper is to evaluate the ability of DisEn, in comparison with fuzzy entropy (FuzEn), sample entropy (SampEn), and permutation entropy (PerEn), to discriminate 36 AD patients from 26 elderly control subjects using resting-state magnetoencephalogram (MEG) signals. The results obtained by DisEn, FuzEn, and SampEn, unlike PerEn, show that the AD patients' signals are more regular than controls' time series. The p-values obtained by DisEn, FuzEn, SampEn, and PerEn based methods demonstrate the superiority of DisEn over PerEn, SampEn, and PerEn. Moreover, the computation time for the newly proposed DisEn-based method is noticeably less than for the FuzEn, SampEn, and PerEn based approaches.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.