Brain computer interface technology represents a highly growing field of research with application systems. Its contributions in medical fields range from prevention to neuronal rehabilitation for serious injuries. Mind reading and remote communication have their unique fingerprint in numerous fields such as educational, self-regulation, production, marketing, security as well as games and entertainment. It creates a mutual understanding between users and the surrounding systems. This paper shows the application areas that could benefit from brain waves in facilitating or achieving their goals. We also discuss major usability and technical challenges that face brain signals utilization in various components of BCI system. Different solutions that aim to limit and decrease their effects have also been reviewed.Ó 2015 Production and hosting by Elsevier B.V. on behalf
Human activity recognition is an important area of machine learning research as it has many utilization in different areas such as sports training, security, entertainment, ambientassisted living, and health monitoring and management. Studying human activity recognition shows that researchers are interested mostly in the daily activities of the human. Therefore, the general architecture of HAR system is presented in this paper, along with the description of its main components. The state of the art in human activity recognition based on accelerometer is surveyed. According to this survey, Most of the researches recently used deep learning for recognizing HAR, but they focused on CNN even though there are other deep learning types achieved a satisfied accuracy. The paper displays a two-level taxonomy in accordance with machine learning approach (either traditional or deep learning) and the processing mode (either online or offline). Forty eight studies are compared in terms of recognition accuracy, classifier, activities types, and used devices. Finally, the paper concludes different challenges and issues online versus offline also using deep learning versus traditional machine learning for human activity recognition based on accelerometer sensors.
Road traffic accidents are caused 1.25 million deaths per year worldwide. To improve road safety and reducing road accidents, a recognition method for driving events is introduced in this paper. The proposed method detected and classified both driving behaviors and road anomalies patterns based on smartphone sensors (accelerometer and gyroscope). k-Nearest Neighbor and Dynamic Time Warping algorithms were utilized for method evaluation. Experiments were conducted to evaluate k-nearest neighbor and dynamic time warping algorithms accuracy for road anomalies and driving behaviors detection, moreover, driving behaviors classification. Evaluation results showed that k-nearest neighbor algorithm detected road anomalies and driving behaviors with total accuracy 98.67%. Dynamic time warping algorithm classified (normal and abnormal) driving behaviors with total accuracy 96.75%.
There are common techniques for personal identification such as fingerprint recognition, face recognition, and iris recognition. In this paper, we suggest a new method for personal identification using lip print furrows. This method will be useful in forensics services. This study aims to identify people by their lip print patterns that are unique for each person. Lip print features are extracted from the lip print images by using the vertical Sobel operator, diagonal ±45 lines, and hough transform. A lip print pattern was formed for each person containing only the furrows (the extracted features) that were extracted from 3 lip print images for that person. The correlation coefficients and the mean squared error (MSE) are provided and passed to the support vector machine (SVM) for the classification process. The suggested method gives good results. A comparison between the results of the proposed method and other methods was presented.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.