Abstract-The computational intelligence such as artificial neural network (ANN) and fuzzy inference system (FIS) is a strong tool for prediction and simulation in engineering applications. In this paper, radial basis function (RBF) network and adaptive neuro-fuzzy inference system (ANFIS) are used for prediction of IC50 (the 50% inhibitory concentration) values evaluated by the MTT assay in human cancer cell lines. For developing of the proposed models, the input parameters are the concentration of the drug and the types of cell lines and the output is IC50 values in the A549, H157, H460 and H1975 cell lines. The predicted IC50 values using the proposed RBF and ANFIS models are compared with the experimental data. The obtained results show that both RBF and ANFIS models have achieved good agreement with the experimental data. Therefore, the proposed RBF and ANFIS models are useful, reliable, fast and cheap tools to predict the IC50 values determined by the MTT assay in human cancer cell lines.
Adaptive neurofuzzy inference system (ANFIS) is investigated to optimize the configuration of anode shape in plasma focus devices to achieve the highest X-ray yield. Variables of discharge voltage, filling gas pressure, and angles of anode slopes (Φ1and Φ2) are chosen as input parameters, while the output is designated to be the radiated hard X-ray intensity. The trained ANFIS has achieved good agreement with the experimental results and has mean relative error percentages (MRE%) 1.12% and 2.18% for training and testing data, respectively. The study demonstrates that adaptive neurofuzzy inference system is useful, reliable, and low-cost way to interpret the highest X-ray yield and corresponding anode configuration in plasma focus devices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.