Highlights
The prevalence of IBD is increasing in many societies.
The need for an appropriate biomarker for the diagnosis and management of IBD is felt.
Fecal Calprotectin is helpful biomarker in discrimination between IBD and IBS.
Fecal calprotectin showed significant correlation with some endoscopic activity indices.
In COVID-19 pandemic, fecal calprotectin can be helpful for IBD non-invasive management.
In interpreting the results of fecal calprotectin test, test limitations should be considered.
Inflammatory bowel disease (IBD), as a chronic and recurrent inflammatory disorder, is caused by a dysregulated and aberrant immune response to exposed environmental factors in genetically susceptible individuals. Despite huge efforts in determining the molecular pathogenesis of IBD, an increasing worldwide incidence of IBD has been reported. MicroRNAs (miRNAs) are a set of noncoding RNA molecules that are about 22 nucleotides long, and these molecules are involved in the regulation of the gene expression. By clarifying the important role of miRNAs in a number of diseases, their role was also considered in IBD; numerous studies have been performed on this topic.In this review, we attempt to summarize a number of studies and discuss some of the recent developments in the roles of miRNAs in the pathophysiology, diagnosis, and treatment of IBD.
The CRISPR/Cas9 system is an RNA-based adaptive immune system in bacteria and archaea. Various studies have shown that it is possible to target a wide range of human genes and treat some human diseases, including cancers, by the CRISPR/Cas9 system. In fact, CRISPR/Cas9 gene editing is one of the most efficient genome manipulation techniques. Studies have shown that CRISPR/Cas9 technology, in addition to having the potential to be used as a new therapeutic approach in the treatment of cancers, can also be used to enhance the effectiveness of existing treatments. Undoubtedly, the issue of drug resistance is one of the main obstacles in the treatment of cancers. Cancer cells resist anticancer drugs by a variety of mechanisms, such as enhancing anticancer drugs efflux, enhancing DNA repair, enhancing stemness, and attenuating apoptosis. Mutations in some proteins of different cellular signaling pathways are associated with these events and drug resistance. Recent studies have shown that the CRISPR/Cas9 technique can be used to target important genes involved in these mechanisms, thereby increasing the effectiveness of anticancer drugs. In this review article, studies related to the applications of this technique in overcoming drug resistance in cancer cells will be reviewed. In addition, we will give a brief overview of the limitations of the CRISP/Cas9 gene-editing technique.
In cancerous cells, significant changes occur in the activity of signaling pathways affecting a wide range of cellular activities ranging from growth and proliferation to apoptosis, invasiveness, and metastasis. Extensive changes also happen with respect to the metabolism of a cancerous cell encompassing a wide range of functions that include: nutrient acquisition, biosynthesis of macromolecules, and energy generation. These changes are important and some therapeutic approaches for treating cancers have focused on targeting the metabolism of cancerous cells. Oncogenes and tumor suppressor genes have a significant effect on the metabolism of cells. There appears to be a close interaction between metabolism and the signaling pathways in a cancerous cell, in which the interaction provides the metabolic needs of a cancerous cell for uncontrolled proliferation, resistance to apoptosis, and metastasis. In this review, we have reviewed the latest findings in this regard and briefly review the most recent research findings regarding targeting the metabolism of cancer cells as a therapeutic approach for treatment of cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.