In this paper, the authors propose a new hybrid strategy (using artificial neural networks and hidden Markov models) for skill automation. The strategy is based on the concept of using an “adaptive desired” that is introduced in the paper. The authors explain how using an adaptive desired can help a system for which an explicit model is not available or is difficult to obtain to smartly cope with environmental disturbances without requiring explicit rules specification (as with fuzzy systems). At the same time, unlike the currently available hidden Markov-based systems, the system does not merely replay a memorized skill. Instead, it takes into account the current system state as reported by sensors. The authors approach can be considered a bridge between the spirit of conventional automatic control theory and fuzzy/hidden Markov-based thinking. To demonstrate the different aspects of the proposed strategy, the authors discuss its application to underwater welding automation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.