Background and Objective: Nowadays, getting an efficient Brain Tumor Segmentation in Multi-Sequence MR images as soon as possible, gives an early clinical diagnosis, treatment and follow-up. The aim of this study is to develop a new deep learning model for the segmentation of brain tumors. The proposed models are used to segment the brain tumors of Glioblastomas (with both high and low grade). Glioblastomas have four properties: different sizes, shapes, contrasts, in addition, Glioblastomas appear anywhere in the brain.Methods: In this paper, we propose three end-to-end Incremental Deep Convolutional Neural Networks models for fully automatic Brain Tumor Segmentation. Our proposed models are different from the other CNNs-based models that follow the technique of trial and error process which does not use any guided approach to get the suitable hyper-parameters. Moreover, we adopt the technique of Ensemble Learning to design a more efficient model. For solving the problem of training CNNs model, we propose a new training strategy which takes into account the most influencing hyper-parameters by bounding and setting a roof to these hyper-parameters to accelerate the training.Results: Our experiment results reported on BRATS-2017 dataset. The proposed deep learning models achieve the state-of-the-art performance without any post-processing operations. Indeed, our models achieve in average 0.88 Dice score over the complete region. Moreover, the efficient design with the advantage of GPU implementation, allows our three deep learning models to achieve brain segmentation results in average 20.87 seconds.Conclusions: The proposed deep learning models are effective for the segmentation of brain tumors and allow to obtain high accurate results. Moreover, the proposed models could help the physician experts to reduce the time of diagnostic.
In this paper, we present a new Deep Convolutional Neural Networks (CNNs) dedicated to fully automatic segmentation of Glioblastoma brain tumors with high-and low-grade. The proposed CNNs model is inspired by the Occipito-Temporal pathway which has a special function called selective attention that uses different receptive field sizes in successive layers to figure out the crucial objects in a scene. Thus, using selective attention technique to develop the CNNs model, helps to maximize the extraction of relevant features from MRI images. We have also treated two more issues: class-imbalance, and the spatial relationship among image Patches. To address the first issue, we propose two steps: an equal sampling of images Patches and an experimental analysis of the effect of weighted cross-entropy loss function on the segmentation results. In addition, to overcome the second issue, we have studied the effect of Overlapping Patches against Adjacent Patches where the Overlapping Patches show a better segmentation result due to the introduction of the global context as well as the local features of the image Patches compared to the conventionnel Adjacent Patches method. Our experiment results are reported on BRATS-2018 dataset where our Endto-End Deep Learning model achieved state-of-the-art performance. The median Dice score of our fully automatic segmentation model is 0.90, 0.83, 0.83 for the whole tumor, tumor core, and enhancing tumor respectively compared to the Dice score of radiologist, that is in the range 74%-85%. Moreover, our proposed CNNs model is not only computationally efficient at inference time, but it could segment the whole brain on average 16 seconds. Finally, the proposed Deep Learning model provides an accurate and reliable segmentation result, and that makes it suitable for adopting in research and as a part of different clinical settings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.