In this paper, a new navigating method for a non-holonomic wheeled moving robot in a dynamic environment with the moving obstacles is proposed. This method is indeed the combination of the nonlinear optimal controller based on State-Dependent Riccati Equation (SDRE) and an obstacle avoidance algorithm named artificial potential field (APF). The corresponding cost function of the SDRE is obtained of APF algorithm. APF algorithm forces the robot to approach the target as an attracting (low-potential) point and to get away from the obstacle as a repulsing (high-potential) point. This method calculates the best path from origin to destination which also implicitly guaranties the stability. The obtained path is the best according to the both amount of traveled distance and input energy. Moreover, this approach not only avoid both fixed and moving obstacle, but also create a smooth path in presence of them. Keeping the nonlinear structure of the system instead of eliminating them during the linearization process is the advantage of SDRE method. Here, the robot navigation is done in the presence of the three different movements of obstacle: (1) fixed speed, (2) fixed acceleration and (3) non-uniform circular. The represented simulation results indicate a suitable performance of the proposed algorithm.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.