Electromagnetic fields (EMFs) may affect the endogenous neural stem cells within the brain. The aim of this study was to assess the effects of EMFs on the process of toxin-induced demyelination and subsequent remyelination. Demyelination was induced using local injection of lysophosphatidylcholine within the corpus callosum of adult female Sprague-Dawley rats. EMFs (60 Hz; 0.7 mT) were applied for 2 h twice a day for 7, 14, or 28 days postlesion. BrdU labeling and immunostaining against nestin, myelin basic protein (MBP), and BrdU were used for assessing the amount of neural stem cells within the tissue, remyelination patterns, and tracing of proliferating cells, respectively. EMFs significantly reduced the extent of demyelinated area and increased the level of MBP staining within the lesion area on days 14 and 28 postlesion. EMFs also increased the number of BrdU- and nestin-positive cells within the area between SVZ and lesion as observed on days 7 and 14 postlesion. It seems that EMF potentiates proliferation and migration of neural stem cells and enhances the repair of myelin in the context of demyelinating conditions.
Multiple sclerosis frequently affects the optic apparatus, particularly optic chiasm and nerves. Here, we have reported the structural and molecular characteristics of remyelination in the adult rat optic chiasm and nerves. Moreover, considering the proximity of optic chiasm and 3rd ventricle, we have tried to determine if proliferating cells residing in 3rd ventricle region are able to migrate in response to experimental demyelination of the optic chiasm. Following local demyelination by lysolecithin, remyelination pattern in longitude of optic chiasm and proximal nerves was investigated using myelin staining and marker genes expression. Furthermore, cell tracing was carried out using BrdU labeling of proliferating cells prior to gliotoxin injection. Morphometric analysis revealed that demyelination was considerable on days 7 and 14 and an incomplete remyelination occurred on day 28 post-lesion. Interestingly, myelin repair was more evident in the caudal part of chiasm, compared to rostral part and proximal optic nerves. Following chiasm and nerve demyelination, trains of BrdU+ cells were seen near the 3rd ventricle which subsequently moved to lesion site. Nestin was significantly up-regulated in 3rd ventricle surroundings. At the lesion site, Nogo-A gene expression was significantly decreased on days 7 and 14 post lesion, while Olig2, nestin, and GFAP expression was increased on day 7. The changes were then reversed by the time. Myelin repair in optic chiasm seems to be mediated by endogenous progenitors and stem cells. Adult 3rd ventricle proliferating cells may play a role in this context by mobilization into the demyelinated chiasm.
Multiple sclerosis (MS) is a chronic inflammatory disease, which leads to focal demyelination in the brain and spinal cord. Studies showed that iron released during the course of myelin breakdown exacerbates tissue damage, which is in agreement with the features of iron-dependent cell death, ferroptosis. Here, we aimed to investigate the possible contribution of ferroptosis in the demyelinated optic nerve, and to explore the effectiveness of ferroptosis inhibitor, deferiprone (DFP), on the extent of demyelination, inflammation and axonal damage. For this purpose, focal demyelination was induced by injection of lysolecithin (LPC), into the optic nerve of male C57BL/6J mice. Afterward, optic nerves were harvested at different time points from as early as 6 h up to 7 days post-LPC injection. Next, to evaluate the effectiveness of DFP two groups of animals received daily intraperitoneal injection of DFP for 3 or 7 continuous days. Vehicle groups received saline. Iron deposition was observed at different time points post-LPC injection from 6 h to 7 days post injection. Examining ferroptosis markers showed a significant reduction in glutathione content along with increased level of malondialdehyde and upregulated ferroptosis marker genes at early time points after injection. Besides, DFP treatment during the inflammatory phase of the model resulted in decreased microgliosis and inflammation. Reduced demyelination, microgliosis and astrogliosis was shown in mice that received DFP for 7 days. Moreover, DFP protected against axonal damage and retinal ganglion cells loss. Our results suggest the possible contribution of ferroptosis pathway in the process of demyelination. The therapeutic strategies targeting iron deposition, e.g. DFP treatment might thus represent a promising therapeutic target for patients with MS.
Background: Breast cancer is the most prevalent neoplasm diagnosed in Iranian women. Objectives: The current study was performed to measure the hormone receptor status and its possible connection with the patient’s age, tumor size, histological grade, and lymph node status and involvement in patients with invasive ductal breast cancer (IDBC) Methods: A total of 103 women with IDBC recently diagnosed at the Department of Pathology of Shohada-E-Tajrish Hospital were entered into this study. The mean age of the patients was 48.4 years, and 59.2% of cases were 50 years old or less. Results: Most lesions (78.6%) were more than 2 cm at their greatest dimension. Grade-II lesions were observed in a large number of patients and 59.8% of cases had lymph node involvement. Positive ER, PR, and HER-2/neu were detected in 59%, 57%, and 29% of patients, respectively. A significant correlation was found between patients’ age and histologic score, tumor dimension and both histologic score and nuclear grade, and, finally, between lymph node involvement and nuclear grade. Conclusions: According to previous studies, the evaluation of hormone receptor status in patients with breast cancer is strongly recommended. Here, by studying its possible connection with the patient’s age, tumor size, histological grade, and lymph node metastasis, we detected some biomarkers, which could be used as prognostic indices in these patients. These biomarkers could help us in the clinical management of patients with IDBC by providing the best therapeutic options.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.