The term big data has emerged in network concepts since the Internet of Things (IoT) made data generation faster through various smart environments. In contrast, bandwidth improvement has been slower; therefore, it has become a bottleneck, creating the need to solve bandwidth constraints. Over time, due to smart environment extensions and the increasing number of IoT devices, the number of fog nodes has increased. In this study, we introduce fog fragment computing in contrast to conventional fog computing. We address bandwidth management using fog nodes and their cooperation to overcome the extra required bandwidth for IoT devices with emergencies and bandwidth limitations. We formulate the decision-making problem of the fog nodes using a reinforcement learning approach and develop a Q-learning algorithm to achieve efficient decisions by forcing the fog nodes to help each other under special conditions. To the best of our knowledge, there has been no research with this objective thus far. Therefore, we compare this study with another scenario that considers a single fog node to show that our new extended method performs considerably better.
With the increase in Internet of Things (IoT) devices and network communications, but with less bandwidth growth, the resulting constraints must be overcome. Due to the network complexity and uncertainty of emergency distribution parameters in smart environments, using predetermined rules seems illogical. Reinforcement learning (RL), as a powerful machine learning approach, can handle such smart environments without a trainer or supervisor. Recently, we worked on bandwidth management in a smart environment with several fog fragments using limited shared bandwidth, where IoT devices may experience uncertain emergencies in terms of the time and sequence needed for more bandwidth for further higher-level communication. We introduced fog fragment cooperation using an RL approach under a predefined fixed threshold constraint. In this study, we promote this approach by removing the fixed level of restriction of the threshold through hierarchical reinforcement learning (HRL) and completing the cooperation qualification. At the first learning hierarchy level of the proposed approach, the best threshold level is learned over time, and the final results are used by the second learning hierarchy level, where the fog node learns the best device for helping an emergency device by temporarily lending the bandwidth. Although equipping the method to the adaptive threshold and restricting fog fragment cooperation make the learning procedure more difficult, the HRL approach increases the method’s efficiency in terms of time and performance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.