Diffusion-weighted MRI has the potential to provide important new insights into physiological and microstructural properties of the body. The Intra-Voxel Incoherent Motion (IVIM) model relates the observed DW-MRI signal decay to parameters that reflect blood flow in the capillaries (D*), capillaries volume fraction (f), and diffusivity (D). However, the commonly used, independent voxel-wise fitting of the IVIM model leads to imprecise parameter estimates, which has hampered their practical usage. In this work, we improve the precision of estimates by introducing a spatially-constrained Incoherent Motion (IM) model of DW-MRI signal decay. We also introduce an efficient iterative “fusion bootstrap moves” (FBM) solver that enables precise parameter estimates with this new IM model. This solver updates parameter estimates by applying a binary graph-cut solver to fuse the current estimate of parameter values with a new proposal of the parameter values into a new estimate of parameter values that better fits the observed DW-MRI data. The proposals of parameter values are sampled from the independent voxel-wise distributions of the parameter values with a model-based bootstrap resampling of the residuals. We assessed both the improvement in the precision of the Incoherent Motion parameter estimates and the characterization of heterogeneous tumor environments by analyzing simulated and in-vivo abdominal DW-MRI data of 30 patients, and in-vivo DW-MRI data of three patients with musculoskeletal lesions. We found our IM-FBM reduces the relative root mean square error of the D* parameter estimates by 80%, and of the f and D parameter estimates by 50% compared to the IVIM model with the simulated data. Similarly, we observed that our IM-FBM method significantly reduces the coefficient of variation of parameter estimates of the D* parameter by 43%, the f parameter by 37%, and the D parameter by 17% compared to the IVIM model (paired Student’s t-test, p<0.0001). In addition, we found our IM-FBM method improved the characterization of heterogeneous musculoskeletal lesions by means of increased contrast-to-noise ratio of 19.3%. The IM model and FBM solver combined, provide more precise estimate of the physiological model parameter values that describing the DW-MRI signal decay and a better mechanism for characterizing heterogeneous lesions than does the independent voxel-wise IVIM model.
Surface-based registration accuracy is better in the face and frontal zones, and error increases as the target location lies further from the face. Visualization of the anisotropic TRE distribution may help the surgeon to make clinical decisions. The observed and estimated accuracies and the intraoperative registration time show that SBR using the fast surface scanner is practical and feasible in a clinical setup.
This paper describes an evaluation framework that allows a standardized and objective quantitative comparison of carotid artery lumen segmentation and stenosis grading algorithms. We describe the data repository comprising 56 multi-center, multi-vendor CTA datasets, their acquisition, the creation of the reference standard and the evaluation measures. This framework has been introduced at the MICCAI 2009 workshop 3D Segmentation in the Clinic: A Grand Challenge III, and we compare the results of eight teams that participated. These results show that automated segmentation of the vessel lumen is possible with a precision that is comparable to manual annotation. The framework is open for new submissions through the website http://cls2009.bigr.nl.
Purpose: To assess the optimal b-values range for perfusion-insensitive apparent diffusion coefficient (ADC) imaging of abdominal organs using short-duration DW-MRI acquisitions with currently available ADC estimation methods. Methods: DW-MRI data of 15 subjects were acquired with eight b-values in the range of 5-800 s/mm 2 . The reference-standard, a perfusion insensitive, ADC value (ADC IVIM ), was computed using an intravoxel incoherent motion (IVIM) model with all acquired diffusion-weighted images. Simulated DW-MRI data was generated using an IVIM model with b-values in the range of 0-1200 s/mm 2 . Monoexponential ADC estimates were calculated using: (1) Two-point estimator (ADC 2 ); (2) least squares three-point (ADC 3 ) estimator and; (3) Rician noise model estimator (ADC R ). The authors found the optimal b-values for perfusion-insensitive ADC calculations by minimizing the relative root mean square error (RRMS) between the ADC IVIM and the monoexponential ADC values for each estimation method and organ. Results: Low b-value = 300 s/mm 2 and high b-value = 1200 s/mm 2 minimized the RRMS between the estimated ADC and the reference-standard ADC IVIM to less than 5% using the ADC 3 estimator. By considering only the in vivo DW-MRI data, the combination of low b-value = 270 s/mm 2 and high b-value of 800 s/mm 2 minimized the RRMS between the estimated ADC and the reference-standard ADC IVIM to <7% using the ADC 3 estimator. For all estimators, the RRMS between the estimated ADC and the reference standard ADC correlated strongly with the perfusion-fraction parameter of the IVIM model (r = [0.78-0.83], p ≤ 0.003). Conclusions:The perfusion compartment in DW-MRI signal decay correlates strongly with the RRMS in ADC estimates from short-duration DW-MRI. The impact of the perfusion compartment on ADC estimations depends, however, on the choice of b-values and estimation method utilized. Likewise, perfusion-related errors can be reduced to <7% by carefully selecting the b-values used for ADC calculations and method of estimation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.