We have recently demonstrated that myocardial adaptation to ischemia triggers a tyrosine kinase regulated signaling pathway leading to the translocation and activation of p38 MAP kinase and MAPKAP kinase 2. Since oxidative stress is developed during ischemic adaptation and since free radicals have recently been shown to function as an intracellular signaling agent leading to the activation of nuclear transcription factor, NFU UB, we examined whether NFU UB was involved in the ischemic adaptation process. Isolated perfused rat hearts were adapted to ischemic stress by repeated ischemia and reperfusion. Hearts were pretreated with genistein to block tyrosine kinase while SB 203580 was used to inhibit p38 MAP kinases. Ischemic adaptation was associated with the nuclear translocation and activation of NFU UB which was significantly blocked by both genistein and SB 203580. The ischemically adapted hearts were more resistant to ischemic reperfusion injury as evidenced by better function recovery and less tissue injury during postischemic reperfusion. Ischemic adaptation developed oxidative stress which was reflected by increased malonaldehyde formation. A synthetic peptide containing a cell membrane-permeable motif and nuclear sequence, SN 50, which blocked nuclear translocation of NFU UB during ischemic adaptation, significantly inhibited the beneficial effects of adaptation on functional recovery and tissue injury. In concert, SN 50 reduced the oxidative stress developed in the adapted myocardium. These results demonstrate that p38 MAP kinase might be upstream of NFU UB which plays a role in ischemic preconditioning of heart. z 1998 Federation of European Biochemical Societies.
Background-Activation of the heart renin-angiotensin system (RAS) under pathophysiological conditions has been correlated with the development of ischemic injury. The binding of angiotensin II to its receptors triggers induction of several, perhaps multifunctional, intracellular signaling pathways, notable among them the Janus kinase/signal transducer and activator of transcription (JAK/STAT) pathway. In this study, we investigated whether the JAK/STAT signaling is involved in the ischemia/reperfusion injury in adult rat myocardium. Methods and Results-We report here that 2 components of the JAK/STAT signaling pathway, namely STAT 5A and STAT 6, are selectively activated in the rat heart subjected to ischemia/reperfusion
Myocardial adaptation to ischemia has been shown to activate protein tyrosine kinase, potentiating activation of phospholipase D, which leads to the stimulation of mitogen-activated protein (MAP) kinases and MAP kinase-activated protein (MAPKAP) kinase 2. The present study sought to further examine the signal transduction pathway for the MAPKAP kinase 2 activation during ischemic adaptation. Isolated perfused rat hearts were adapted to ischemic stress by repeated ischemia and reperfusion. Hearts were pretreated with genistein to block tyrosine kinase, whereas SB-203580 was used to inhibit p38 MAP kinases. Western blot analysis demonstrated that p38 MAP kinase is phosphorylated during ischemic stress adaptation. Phosphorylation of p38 MAP kinase was blocked by genistein, suggesting that activation of p38 MAP kinase during ischemic adaptation is mediated by a tyrosine kinase signaling pathway. MAPKAP kinase 2 was estimated by following in vitro phosphorylation with recombinant human heat shock protein 27 as specific substrate for MAPKAP kinase 2. Again, both genistein and SB-203580 blocked the activation of MAPKAP kinase 2 during myocardial adaptation to ischemia. Immunofluorescence microscopy with anti-p38-antibody revealed that p38 MAP kinase is primarily localized in perinuclear regions. p38 MAP kinase moves to the nucleus after ischemic stress adaptation. After ischemia and reperfusion, cytoplasmic striations in the myocytes become obvious, indicating translocation of p38 MAP kinase from nucleus to cytoplasm. Corroborating these results, myocardial adaptation to ischemia improved the left ventricular functions and reduced myocardial infarction that were reversed by blocking either tyrosine kinase or p38 MAP kinase. These results demonstrate that myocardial adaptation to ischemia triggers a tyrosine kinase-regulated signaling pathway, leading to the translocation and activation of p38 MAP kinase and implicating a role for MAPKAP kinase 2.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.