gamma-Hexachlorocyclohexane (gamma-HCH, also called gamma-BHC and lindane) is a halogenated organic insecticide that causes serious environmental problems. The aerobic degradation pathway of gamma-HCH was extensively revealed in bacterial strain Sphingobium japonicum (formerly Sphingomonas paucimobilis) UT26. gamma-HCH is transformed to 2,5-dichlorohydroquinone through sequential reactions catalyzed by LinA, LinB, and LinC, and then 2,5-dichlorohydroquinone is further metabolized by LinD, LinE, LinF, LinGH, and LinJ to succinyl-CoA and acetyl-CoA, which are metabolized in the citrate/tricarboxylic acid cycle. In addition to these catalytic enzymes, a putative ABC-type transporter system encoded by linKLMN is also essential for the gamma-HCH utilization in UT26. Preliminary examination of the complete genome sequence of UT26 clearly demonstrated that lin genes for the gamma-HCH utilization are dispersed on three large circular replicons with sizes of 3.5 Mb, 682 kb, and 191 kb. Nearly identical lin genes were also found in other HCH-degrading bacterial strains, and it has been suggested that the distribution of lin genes is mainly mediated by insertion sequence IS6100 and plasmids. Recently, it was revealed that two dehalogenases, LinA and LinB, have variants with small number of amino acid differences, and they showed dramatic functional differences for the degradation of HCH isomers, indicating these enzymes are still evolving at high speed.
The mycotoxin deoxynivalenol (DON) causes serious problems worldwide in the production of crops such as wheat and barley because of its toxicity toward humans and livestock. A bacterial culture capable of degrading DON was obtained from soil samples collected in wheat fields using an enrichment culture procedure. The isolated bacterium, designated strain WSN05-2, completely removed 1,000 μg/mL of DON from the culture medium after incubation for 10 days. On the basis of phylogenetic studies, WSN05-2 was classified as a bacterium belonging to the genus Nocardioides. WSN05-2 showed significant growth in culture medium with DON as the sole carbon source. High-performance liquid chromatography analysis indicated the presence of a major initial metabolite of DON in the culture supernatant. The metabolite was identified as 3-epi-deoxynivalenol (3-epi-DON) by mass spectrometry and 1H and 13C nuclear magnetic resonance analysis. The amount of DON on wheat grain was reduced by about 90% at 7 days after inoculation with WSN05-2. This is the first report of a Nocardioides sp. strain able to degrade DON and of the yet unknown 3-epi-DON as an intermediate in the degradation of DON by a microorganism.
The technical formulation of hexachlorocyclohexane (HCH) mainly consists of the insecticidal gamma-isomer and noninsecticidal alpha-, beta-, and delta-isomers, among which beta-HCH is the most recalcitrant and has caused serious environmental problems. A gamma-HCH-utilizing bacterial strain, Sphingobium sp. MI1205, was isolated from soil which had been contaminated with HCH isomers. This strain degraded beta-HCH more rapidly than the well-characterized gamma-HCH-utilizing strain Sphingobium japonicum UT26. In MI1205, beta-HCH was converted to 2,3,5,6-tetrachlorocyclohexane-1,4-diol (TCDL) via 2,3,4,5,6-pentachlorocyclohexanol (PCHL). A haloalkane dehalogenase LinB (LinB(MI)) that is 98% identical (seven amino-acid differences among 296 amino acids) to LinB from UT26 (LinB(UT)) was identified as an enzyme responsible for the two-step conversion of beta-HCH to TCDL. This property of LinB(MI) contrasted with that of LinB(UT), which catalyzed only the first step conversion of beta-HCH to PCHL. Site-directed mutagenesis and computer modeling suggested that two of the seven different amino acid residues (V134 and H247) forming a catalytic pocket of LinB are important for the binding of PCHL in an orientation suitable for the reaction in LinB(MI). However, mutagenesis also indicated the involvement of other residues for the activity unique to LinB(MI). Sequence analysis revealed that MI1205 possesses the IS6100-flanked cluster that contains two copies of the linB (MI) gene. This cluster is identical to the one located on the exogenously isolated plasmid pLB1, suggesting that MI1205 had recruited the linB genes by a horizontal transfer event.
The mycotoxin deoxynivalenol (DON), a secondary metabolite produced by species of the plant pathogen Fusarium, causes serious problems in cereal crop production because of its toxicity towards humans and livestock. A biological approach for the degradation of DON using a DON-degrading bacterium (DDB) appears to be promising, although information about DDBs is limited. We isolated 13 aerobic DDBs from a variety of environmental samples, including field soils and wheat leaves. Of these 13 strains, nine belonged to the Gram-positive genus Nocardioides and other four to the Gram-negative genus Devosia. The degradation phenotypes of the two Gram types were clearly different; all washed cells of the 13 strains degraded 100 μg mL(-1) DON to below the detection limit (0.5 μg mL(-1)), but the conditions inducing the DON-degrading activities differed between the two Gram types. The HPLC profiles of the DON metabolites were also distinct between the two genera, although all strains produced 3-epi-deoxynivalenol. The Gram-positive strains showed DON assimilation in media containing DON as a carbon source, whereas the Gram-negatives did not. Our results suggest that aerobic DDBs are distributed within at least two phylogenetically restricted genera, suggesting independent evolution of the DON-degradation mechanisms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.