Seborrheic dermatitis (SD) is a chronic inflammatory dermatologic condition in which erythema and itching develop on areas of the body with sebaceous glands, such as the scalp, face and chest. The inflammation is evoked directly by oleic acid, which is hydrolyzed from sebum by lipases secreted by skin microorganisms. Although the skin fungal genus, Malassezia, is thought to be the causative agent of SD, analysis of the bacterial microbiota of skin samples of patients with SD is necessary to clarify any association with Malassezia because the skin microbiota comprises diverse bacterial and fungal genera. In the present study, bacterial microbiotas were analyzed at non-lesional and lesional sites of 24 patients with SD by pyrosequencing and qPCR. Principal coordinate analysis revealed clear separation between the microbiota of non-lesional and lesional sites. Acinetobacter, Corynebacterium, Staphylococcus, Streptococcus and Propionibacterium were abundant at both sites. Propionibacterium was abundant at non-lesional sites, whereas Acinetobacter, Staphylococcus and Streptococcus predominated at lesional sites; however, the extent of Propionibacterium colonization did not differ significantly between lesional and non-lesional sites according to qPCR. Given that these abundant bacteria hydrolyze sebum, they may also contribute to SD development. To the best of our knowledge, this is the first comprehensive analysis of the bacterial microbiotas of the skin of SD patients.
Malassezia spp. are lipophilic fungi that occur on all skin surfaces of humans and animals as commensal and pathogenic organisms. In the 2000s, several new species were added to the Malassezia genus by Japanese researchers. The genus Malassezia now includes 14 species of basidiomycetous yeast. Culture-independent molecular analysis clearly demonstrated that the DNA of Malassezia spp. was predominantly detected in core body and arm sites, suggesting that they are the dominant fungal flora of the human body. Malassezia spp. have been implicated in skin diseases including pityriasis versicolor (PV), Malassezia folliculitis (MF), seborrheic dermatitis (SD) and atopic dermatitis (AD). While Malassezia spp. are directly responsible for the infectious diseases, PV and MF, they act as an exacerbating factor in AD and SD. The fatty acids generated by Malassezia lipase can induce inflammation of the skin, resulting in development of SD. Patch and serum immunoglobulin E tests revealed that AD patients were hypersensitive to Malassezia. However, these findings only partially elucidated the mechanism by which Malassezia spp. induce inflammation in the skin; understanding of the pathogenetic role of Malassezia spp. in SD or AD remains incomplete. In this article, the latest findings of Malassezia research are reviewed with special attention to skin diseases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.