The reduction of tetrachloroaurate or potassium tetrachloropalladate with sodium borohydride in the presence of optically active 2,2'-bis(diphenylphosphino)-1,1'-binaphthyl [BINAP] gave the chiral (S)- or (R)-BINAP-stabilized gold or palladium nanoparticles which showed the small core (1.7 nm for BINAP-Au and 2.0 nm for BINAP-Pd) with narrow size distribution and remarkably high stability. Asymmetric hydrosilylation of styrene with trichlorosilane in the presence of chiral BINAP-Pd nanoparticles afforded an optically active 1-phenyl-1-trichlorosilylethane which was converted into an optically active 1-phenylethanol (95% enantiomeric excess) by oxidative cleavage of the carbon-silicon bond.
Lysine residues can be post-translationally modified by various acyl modifications in bacteria and eukarya. Here, we showed that two major acyl modifications, acetylation and succinylation, were changed in response to the carbon source in the Gram-positive model bacterium Bacillus subtilis. Acetylation was more common when the cells were grown on glucose, glycerol, or pyruvate, whereas succinylation was upregulated when the cells were grown on citrate, reflecting the metabolic states that preferentially produce acetyl-CoA and succinyl-CoA, respectively. To identify and quantify changes in acetylation and succinylation in response to the carbon source, we performed a stable isotope labeling by amino acids in cell culture (SILAC)-based quantitative proteomic analysis of cells grown on glucose or citrate. We identified 629 acetylated proteins with 1355 unique acetylation sites and 204 succinylated proteins with 327 unique succinylation sites. Acetylation targeted different metabolic pathways under the two growth conditions: branched-chain amino acid biosynthesis and purine metabolism in glucose and the citrate cycle in citrate. Succinylation preferentially targeted the citrate cycle in citrate. Acetylation and succinylation mostly targeted different lysine residues and showed a preference for different residues surrounding the modification sites, suggesting that the two modifications may depend on different factors such as characteristics of acyl-group donors, molecular environment of the lysine substrate, and/or the modifying enzymes. Changes in acetylation and succinylation were observed in proteins involved in central carbon metabolism and in components of the transcription and translation machineries, such as RNA polymerase and the ribosome. Mutations that modulate protein acylation affected B. subtilis growth. A mutation in acetate kinase (ackA) increased the global acetylation level, suggesting that acetyl phosphate-dependent acetylation is common in B. subtilis, just as it is in Escherichia coli. Our results suggest that acyl modifications play a role in the physiological adaptations to changes in carbon nutrient availability of B. subtilis.
Quercetin is a polyphenol found in food that has numerous health benefits. This study investigated the relationship between quercetin metabolism, gut microbiota composition, and dietary intake in elderly Japanese subjects. A food frequency questionnaire was used to assess dietary intake during the week prior to stool sample collection. Fecal suspensions from 56 subjects were anaerobically incubated with quercetin and fecal microbiota composition was analyzed by next-generation sequencing. Inter-individual variations in quercetin concentration and fecal microbiota composition at family level suggested differences in microbial quercetin metabolism. The abundance of Sutterellaceae (r = −0.292) and Oscillospiraceae (r = −0.334) was negatively correlated whereas that of Fusobacteriaceae (r = 0.361) and Enterobacteriaceae (r = 0.321) was positively correlated with quercetin concentration. Niacin (r = −0.313), vitamin B6 (r = −0.297), vitamin B12 (r = −0.266), vitamin D (r = −0.301), and ratio of animal protein to total protein (r = −0.27) were also negatively correlated with quercetin concentration. Bacterial abundance was positively or negatively related to intake of food components. This is the first report describing the relationship between fecal quercetin metabolism, human microbiota, and dietary intake in the elderly.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.