A series of cis-poly(biphenylylacetylene) (PBPA) derivatives bearing chiral and achiral pendant groups at the 4′-position of the biphenyl units through an amide (−NHCO−) or carbamate (−NHCOO−) linker were synthesized by polymerization of the corresponding biphenylylacetylene (BPA) monomers that can be readily prepared in one step from a novel aminofunctionalized BPA. An excess one-handed helix induction in the PBPAs through covalent and noncovalent chiral interactions and their chiral recognition abilities when used as chiral stationary phases for high-performance liquid chromatography were investigated. PBPAs bearing optically pure L-amino acid residues showed unique two-state helical conformational changes between the extended and contracted helices regulated by the solvent-mediated on/off switching of the intramolecular hydrogen-bonding formations between the pendants or at each pendant. The chiral recognition abilities of the helical PBPAs were significantly influenced by the kinds of the pendant L-amino acid residues. The preferred-handed contracted helical PBPA carrying an L-leucine-derived pendant showed an excellent chiral resolving power toward various racemic compounds including axially and point chiral compounds and chiral metal complexes. The elution orders of some racemates were completely reversed when its helical conformation was changed to the extended helix. On the other hand, the trans-enriched nonhelical L-leucine-bound PBPA derived from its preferred-handed cis-helical PBPA and achiral pendant-bound cishelical PBPAs induced by noncovalent chiral interactions and subsequent static memory of the helicity showed a poor and no chiral recognition, respectively.
A series of cis-poly(biphenylylacetylene) (PBPA) derivatives bearing chiral and achiral pendant groups at the 4’-position of the biphenyl units through an amide (–NHCO–) or carbamate (–NHCOO–) linker were synthesized by polymerization of the corresponding biphenylylacetylene (BPA) monomers that can be readily prepared in one step from a novel amino-functionalized BPA. An excess one-handed helix induction in the PBPAs through covalent and noncovalent chiral interactions and their chiral recognition abilities when used as chiral stationary phases (CSPs) for high-performance liquid chromatography (HPLC) were investigated. PBPAs bearing optically-pure L-amino acid residues showed unique two-state helical conformational changes between the extended and contracted helices regulated by the solvent-mediated on/off switching of the intramolecular hydrogen-bonding formations between the pendants or at each pendant. The chiral recognition abilities of the helical PBPAs were significantly influenced by the kinds of the pendant L-amino acid residues. The preferred-handed contracted helical PBPA carrying an L-leucine derived pendant showed an excellent chiral resolving power toward various racemic compounds including axially and point chiral compounds and chiral metal complexes. The elution orders of some racemates were completely reversed when its helical conformation was changed to the extended helix. On the other hand, the trans-enriched nonhelical L-leucine-bound PBPA derived from its preferred-handed cis-helical PBPA and achiral pendant-bound cis-helical PBPAs induced by noncovalent chiral interactions and subsequent static memory of the helicity showed a poor and no chiral recognition, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.