Bacterial magnetic particles (BacMPs) are efficient platforms of proteins for surface display systems. In this study, mononuclear cells from peripheral blood were separated using BacMPs expressing protein A on the BacMP membrane surface (protein A-BacMPs), which were complexed with the Fc fragment of anti-mouse IgG antibody. The procedure of positive selection involves incubation of mononuclear cells and mouse monoclonal antibodies against different cell surface antigens (CD8, CD14, CD19, CD20) prior to treatment with protein A-BacMP binding with rabbit anti-mouse IgG secondary antibodies. Flow cytometric analysis showed that approximately 97.5 +/- 1.7% of CD19(+) and CD20(+) cells were involved in the positive fraction after magnetic separation. The ratio of the negative cells in the negative fraction was approximately 97.6 +/-1.4%. This indicates that CD19(+) and CD20(+) cells can be efficiently separated from mononuclear cells. Stem cell marker (CD34) positive cells were also separated using protein A-BacMP binding with antibody. May-Grunwald Giemsa stain showed a high nuclear/cytoplasm ratio, which indicates a typical staining pattern of stem cells. The separated cells had the capability of colony formation as hematopoietic stem cells. Furthermore, the inhibitory effect of magnetic cell separation on CD14(+) cells was evaluated by measurement of cytokine in the culture supernatant by ELISA when the cells were cultured with or without lipopolysaccharide (LPS). The induction of IL1-beta, TNFalpha, and IL6 was observed in the presence of 1 ng/mL LPS in all fractions. On the other hand, in the absence of LPS, BacMPs had little immunopotentiation to CD14(+) cells as well as that of artificial magnetic particles, although TNFalpha and IL6 were slightly induced in the absence of LPS in the positive fraction.
Influenza virus has the ability to evade host immune surveillance through rapid viral genetic drift and reassortment; therefore, it remains a continuous public health threat. The development of vaccines producing broadly reactive antibodies, as well as therapeutic strategies using human neutralizing monoclonal antibodies (HuMAbs) with global reactivity, has been gathering great interest recently. Here, three hybridoma clones producing HuMAbs against influenza B virus, designated 5A7, 3A2 and 10C4, were prepared using peripheral lymphocytes from vaccinated volunteers, and were investigated for broad cross-reactive neutralizing activity. Of these HuMAbs, 3A2 and 10C4, which recognize the readily mutable 190-helix region near the receptor binding site in the hemagglutinin (HA) protein, react only with the Yamagata lineage of influenza B virus. By contrast, HuMAb 5A7 broadly neutralizes influenza B strains that were isolated from 1985 to 2006, belonging to both Yamagata and Victoria lineages. Epitope mapping revealed that 5A7 recognizes 316G, 318C and 321W near the C terminal of HA1, a highly conserved region in influenza B virus. Indeed, no mutations in the amino acid residues of the epitope region were induced, even after the virus was passaged ten times in the presence of HuMAb 5A7. Moreover, 5A7 showed significant therapeutic efficacy in mice, even when it was administered 72 hours post-infection. These results indicate that 5A7 is a promising candidate for developing therapeutics, and provide insight for the development of a universal vaccine against influenza B virus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.