Budding yeast Cdc13, Stn1, and Ten1 form the CST complex to protect telomeres from lethal DNA degradation. It remains unknown whether similar complexes are conserved in higher eukaryotes or not. Here we isolated mammalian STN1 and TEN1 homologs and CTC1 (conserved telomere maintenance component 1). The three proteins contain putative OB-fold domains and form a complex called CST, which binds to single-stranded DNA with high affinity in a sequence-independent manner. CST associates with a fraction of telomeres consistently during the cell cycle, in quiescent cells and Pot1-knockdown cells. It does not colocalize with replication foci in S phase. Significant increases in the abundance of single-stranded G-strand telomeric DNA were observed in Stn1-knockdown cells. We propose that CST is a replication protein A (RPA)-like complex that is not directly involved in conventional DNA replication at forks but plays a role in DNA metabolism frequently required by telomeres.
Telomeres are specialized chromatin structures that protect chromosomal ends. Protection of telomeres 1 (Pot1) binds to the telomeric G-rich overhang, thereby protecting telomeres and regulating telomerase. Mammalian POT1 and TPP1 interact and constitute part of the six-protein shelterin complex. Here we report that Tpz1, the TPP1 homolog in fission yeast, forms a complex with Pot1. Tpz1 binds to Ccq1 and the previously undiscovered protein Poz1 (Pot1-associated in Schizosaccharomyces pombe), which protect telomeres redundantly and regulate telomerase in positive and negative manners, respectively. Thus, the Pot1-Tpz1 complex accomplishes its functions by recruiting effector molecules Ccq1 and Poz1. Moreover, Poz1 bridges Pot1-Tpz1 and Taz1-Rap1, thereby connecting the single-stranded and double-stranded telomeric DNA regions. Such molecular architectures are similar to those of mammalian shelterin, indicating that the overall DNA-protein architecture is conserved across evolution.
Telomerase is a specialized type of reverse transcriptase which catalyzes the synthesis and extension of telomeric DNA (for review, see ref.1). This enzyme is highly active in most cancer cells, but is inactive in most somatic cells. This striking observation led to the suggestion that telomerase might be important for the continued growth or progression of cancer cells. However, little is known about the molecular mechanism of telomerase activation in cancer cells. Human telomerase reverse transcriptase (hTRT) has recently been identified as a putative human telomerase catalytic subunit. We transfected the gene encoding hTRT into telomerase-negative human normal fibroblast cells and demonstrated that expression of wild-type hTRT induces telomerase activity, whereas hTRT mutants containing mutations in regions conserved among other reverse transcriptases did not. Hepatocellular carcinoma (20 samples) and non-cancerous liver tissues (19 samples) were examined for telomerase activity and expression of hTRT, the human telomerase RNA component (hTR; encoded by TERC) and the human telomerase-associated protein (hTLP1; encoded by TEP1). A significant correlation between hTRT expression and telomerase activity was observed. These results indicate that the hTRT protein is the catalytic subunit of human telomerase, and that it plays a key role in the activation of telomerase in cancer cells.
We have cloned and characterized the rat telomerase protein component 1 gene (TLP1), which is related to the gene for Tetrahymena p80. The cDNA encodes a 2629 amino acid sequence and produces the TLP1 proteins p240 and p230. The anti-TLP1 antibody specifically immunoprecipitated the telomerase activity. Moreover, p240 and p230 were copurified with telomerase activity in a series of extensive purification experiments. These results strongly suggest that the TLP1 proteins are components of, or are closely associated with, the rat telomerase. A pulse-chase experiment showed that p240 is modified to p230 in vivo. p230 was the dominant form in telomerase-positive cells, suggesting that modification of the TLP1 protein may regulate telomerase activity in vivo.
Oct-3/4 is a key transcriptional factor whose expression level governs the fate of primitive inner cell mass and embryonic stem (ES) cells. Previously, an upstream 3.3-kb distal enhancer (DE) fragment was identified to be responsible for the specific expression of mouse Oct-3/4 in the inner cell mass and ES cells. However, little is known about the cis-elements and trans-factors required for DE activity. In this study, we identified a novel cis-element, called Site 2B here, located ϳ30 bp downstream from Site 2A, which was previously revealed in DE by an in vivo chemical modification experiment. Using the luciferase reporter assay, we demonstrated that both Site 2A and Site 2B are necessary and sufficient for activating DE in the contexts of both the native Oct-3/4 promoter and the heterologous thymidine kinase minimal promoter. In an electrophoretic mobility shift assay we showed that Site 2B specifically binds to Oct-3/4 and Sox2 when ES-derived cell extracts were used, whereas Site 2A binds to a factor(s) present in both ES and NIH 3T3 cells. Furthermore, we showed that the physiological level of Oct-3/4 in ES cells is required for Site 2B-mediated DE activity using the inducible knockout system of Oct-3/4 in ES cells. These results indicate that Oct-3/4 is a member of the gene family regulated by Oct-3/4 and Sox2, as reported before for the FGF-4, UTF1, Sox2, and Fbx15 genes. Thus, Oct-3/4 and Sox2 comprise a regulatory complex that controls the expression of genes important for the maintenance of the primitive state, including themselves. This autoregulatory circuit of the Sox2⅐Oct-3/4 complex may contribute to maintaining robustly the precise expression level of Oct-3/4 in primitive cells.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.