A remarkable feature of prion biology is the strain phenomenon wherein prion particles apparently composed of the same protein lead to phenotypically distinct transmissible states. To reconcile the existence of strains with the 'protein-only' hypothesis of prion transmission, it has been proposed that a single protein can misfold into multiple distinct infectious forms, one for each different strain. Several studies have found correlations between strain phenotypes and conformations of prion particles; however, whether such differences cause or are simply a secondary manifestation of prion strains remains unclear, largely due to the difficulty of creating infectious material from pure protein. Here we report a high-efficiency protocol for infecting yeast with the [PSI+] prion using amyloids composed of a recombinant Sup35 fragment (Sup-NM). Using thermal stability and electron paramagnetic resonance spectroscopy, we demonstrate that Sup-NM amyloids formed at different temperatures adopt distinct, stably propagating conformations. Infection of yeast with these different amyloid conformations leads to different [PSI+] strains. These results establish that Sup-NM adopts an infectious conformation before entering the cell--fulfilling a key prediction of the prion hypothesis--and directly demonstrate that differences in the conformation of the infectious protein determine prion strain variation.
A principle that has emerged from studies of protein aggregation is that proteins typically can misfold into a range of different aggregated forms. Moreover, the phenotypic and pathological consequences of protein aggregation depend critically on the specific misfolded form. A striking example of this is the prion strain phenomenon, in which prion particles composed of the same protein cause distinct heritable states. Accumulating evidence from yeast prions such as [PSI+] and mammalian prions argues that differences in the prion conformation underlie prion strain variants. Nonetheless, it remains poorly understood why changes in the conformation of misfolded proteins alter their physiological effects. Here we present and experimentally validate an analytical model describing how [PSI+] strain phenotypes arise from the dynamic interaction among the effects of prion dilution, competition for a limited pool of soluble protein, and conformation-dependent differences in prion growth and division rates. Analysis of three distinct prion conformations of yeast Sup35 (the [PSI+] protein determinant) and their in vivo phenotypes reveals that the Sup35 amyloid causing the strongest phenotype surprisingly shows the slowest growth. This slow growth, however, is more than compensated for by an increased brittleness that promotes prion division. The propensity of aggregates to undergo breakage, thereby generating new seeds, probably represents a key determinant of their physiological impact for both infectious (prion) and non-infectious amyloids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.