Abstract-Marinobufagenin and telecinobufagin have been identified as digitalis-like factors in mammals. In toads, marinobufagenin-related compounds, such as marinobufotoxin (MBT), have been isolated in some tissues but not in mammals, and its biological action has not been elucidated. Herein, we aimed to explore the possible production and/or secretion of MBT and the biological action in rats. First, the MBT in culture supernatant of the adrenocortical-originated cell line Y-1 was analyzed by high-performance liquid chromatography and sensitive ELISA for marinobufagenin-like immunoreactivity. Moreover, the structural information was obtained by mass spectrometry. To determine the biological action, MBT (9.6 and 0.96 g/kg per day) was intraperitoneally infused via an osmotic minipump for 1 week. Blood pressure and renal excretion of marinobufagenin-like immunoreactivity were measured. Marinobufagenin-like immunoreactivity was found in Y-1 cell culture media, and the concentration increased until 24 hours. The structural analysis suggested that marinobufagenin-like immunoreactivities were marinobufagenin and MBT, and tandem mass spectrum analysis revealed them with the specific daughter ions. The highest sensitive ELISA-positive peak of marinobufageninlike immunoreactivity in the media was MBT. Continuous administration of MBT in rats for 1 week significantly increased systolic blood pressure and renal excretion of marinobufagenin-like immunoreactivity compared with control rats (135Ϯ3.0 versus 126Ϯ2.0 mm Hg and 1.41Ϯ0.286 versus 0.34Ϯ0.064 ng/day, respectively). These data suggest that MBT, arginine-suberoyl ester of marinobufagenin, can be a novel digitalis-like factor with hypertensive action and is secreted from the adrenocortical cells.
-During the characterization of hemorrhagic factor in venom of Rhabdophis tigrinus tigrinus, so-called Yamakagashi in Japan, one of the Colubridae family, a novel metalloproteinase with molecular weight of 38 kDa in the Duvernoy's gland of Yamakagashi was identified by gelatin zymography and by monitoring its proteolytic activity using a fluorescence peptide substrate, MOCAc-PLGLA 2 pr(Dnp)AR-NH 2 , which was developed for measuring the well-known matrix metalloproteinase (MMP) activity.After purification by gel filtration HPLC and/or column switch HPLC system consisting of an affinity column, which was immobilized with a synthetic BS-10 peptide (MQKPRCGVPD) originating from propeptide domain of MMP-7 and a reversed-phase column, the N-terminal amino acid sequence of the 38 kDa metalloproteinase was identified as FNTFPGDLK which shared a high homology to Xenopus MMP-9.The 38 kDa metalloproteinase required Zn 2+ and Ca 2+ ions for its proteolytic activity. In addition, the proteolytic activity was almost completely inhibited by BS-10, a MMP inhibitor, but not by the serine proteinase inhibitors, cysteine proteinase inhibitors and aspartic proteinase inhibitors.Together these results demonstrated that the 38 kDa proteinase is a novel snake verom metalloproteinase (SVMP) containing HExGHxxGxxH motif which possesses high affinity to the BS-10 peptide, into its molecule, and the enzymatic properties are closed to that of MMPs.Based on the results obtained in the present study, we concluded that the 38 kDa metalloproteinase is a novel metalloproteinase whose activity may be regulated by the cysteine switch mechanism, and could be classified as one of the matrix metalloproteinases rather than snake venom metalloproteinases.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.