A rotary valve nanoinjector was devised for use in capillary electrophoresis (CE) and capillary electrochromatography (CEC). A fused-silica capillary tip was inserted in a small through-hole in the rotor. The narrow and short capillary tip, with an inner volume of 6-24 nL, was embedded in the hole using epoxy resin. The injection volume was confirmed chromatographically by comparing the peak areas obtained with the nanoinjector to those of a conventional injector. In addition, both the rotor and stator of the injector were made of a nonconducting material, polyimide resin, to be utilized for CE and CEC. The application of the nanoinjector for CE was demonstrated.
The reactivity of flow-injection (FI)-horseradish peroxidase (HRP)-catalysed imidazole chemiluminescence (CL) was studied for continuous determination of hydrogen peroxide (H(2)O(2)) and serum glucose with immobilized glucose oxidase. Light emission by the HRP-catalysed imidazole CL was obtained when immobilized HRP, alkaline imidazole (in Tricine solution, pH 9.3) and H(2)O(2) were reacted at room temperature. The optimal pH for the CL reaction was 9.3 and the optimal concentration of imidazole was 100 micromol/L. When no imidazole was added, the light intensity of the same H(2)O(2) specimen decreased to a level that could not be quantitatively determined. The spectrum of the light emitted by imidazole CL was in the range 400-600 nm with a peak at 500 nm. The calibration equation for determination of H(2)O(2) was y = 9860x(2) + 3830x + 11,700, where y = light intensity (RLU) and x = concentration of H(2)O(2) (micromol/L). The detection limit of H(2)O(2) was 5 pmol, and the reproducibility of the H(2)O(2) assay was 2.3% of the coefficient of variation (H(2)O(2) 48 micromol/L, n = 13). The CL method was successfully applied to assay glucose after on-line generation of H(2)O(2) with the immobilized glucose oxidase column, resulting in good reproducibility (CV = 3.3% and 1.0% for the standard glucose and the control serum, respectively).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.