Time-of-flight neutron diffraction measurements were carried out for 6Li/7Li isotopically substituted 10 mol % LiPF6-propylene carbonate-d6 (PC-d6) solutions, in order to obtain structural information on the first solvation shell of Li+. Structural parameters concerning the nearest neighbor Li+...PC and Li+...PF6- interactions were determined through least-squares fitting analysis of the observed difference function, DeltaLi(Q). It has been revealed that the first solvation shell of Li+ consists in average of 4.5(1) PC molecules with an intermolecular Li+...O(PC) distance of 2.04(1) A. The angle Li+...O=C bond angle has been determined to be 138(2) degrees.
Time-of-flight (TOF) neutron scattering measurements have been carried out for liquid null-H 2 O, in which the average coherent scattering length of hydrogen atoms is zero. In order to determine the inelasticity effect depending on both the scattering angle and the neutron flight path ratio, g ½¼ l s =ðl 0 þ l s Þ; l 0 and l s denote the moderator-sample and sample-detector distances, respectively], neutron scattering measurements have been performed using three neutron spectrometers, HIT-II, RAT, and SWAN, installed at KENS, Tsukuba, Japan. The self-scattering intensity for the null-H 2 O was derived by subtracting the known O-O partial structure factor from the observed scattering cross-section. It has been revealed that the magnitude of the inelasticity distortion involved in the self-scattering term is still significant even at a smaller scattering angle than that expected from the first-order inelasticity correction formulas proposed in the literature. The inelasticity distortion in the self-scattering term is found to be preferably reduced by applying the small flight path ratio. An empirical but useful correction procedure for the inelasticity effect is developed using the self-scattering intensities observed for the null-H 2 O. The present correction procedure is applied to the scattering cross-section observed for aqueous 3 mol% alanine solution which involves 20% H of exchangeable hydrogen atoms, and to the first-order difference function D H (Q) observed for 4 mol% lithium benzoate heavy water solutions in which H/D isotopic substitution has been applied for benzyl-hydrogen atoms within the benzoate ion. The results indicate that the present inelasticity correction procedure works satisfactorily for the scattering intensity from the aqueous solution containing H atoms.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.