FACT (facilitate chromatin transcription) is involved in heterochromatic silencing, but its mechanisms and function remain unclear. We reveal that the Spt16 recruitment mechanism operates in two distinct ways in heterochromatin. First, Pob3 mediates Spt16 recruitment onto the heterochromatin through its Spt16 dimerization and tandem PH domains. Without Pob3, Spt16 recruitment is partially reduced, exhibiting a silencing defect and impaired H2A/H2B organization. Second, heterochromatin protein 1 (HP1)/Swi6 mediates Spt16 recruitment onto the heterochromatin by physical interaction of the Swi6 chromo-shadow domain (CSD) and Spt16 peptidase-like domains. Several CSD mutants are tested for Spt16 binding activity, and the charged loop connecting b1 and b2 is critical for Spt16 binding and heterochromatic silencing. Loss of these pathways causes a severe defect in H3K9 methylation and HP1/Swi6 localization in the pericentromeric region, exhibiting transcriptional silencing defects and disordered heterochromatin. Our findings suggest that FACT and HP1/Swi6 work intimately to regulate heterochromatin organization.
In eukaryotic cells, chromatin structure can be broadly categorized as transcriptionally active euchromatin or inactive heterochromatin. Because of its comparatively simple system for heterochromatin formation the fission yeast Schizosaccharomyces pombe provides an excellent model system for analysis of heterochromatin. In S. pombe, constitutive heterochromatin defined by methylation of histone H3 lysine 9 (H3K9me) and its binding protein Swi6/HP1 localizes at the telomere, centromere and mating-type loci. Several distinct systems promote constitutive heterochromatin formation in
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.