This paper presents an analytical expression of the pressure barrier in a capillary-burst valve for flow regulation in centrifugal microfluidics. The analysis considers variations of the interfacial energies at the meniscus of three-dimensional (3D) configuration in a rectangular microchannel with a sudden expansion in cross-section. We derive a simple expression that predicts the critical burst pressure or rotational speed to overcome the capillary valve. Experiments were carried out for capillary valves that were integrated with microchannels on a rotating disk having various cross-sectional dimensions (300 and 400 mu m in width and 80-600 mu m in depth) and wedge angles (30 degrees-100 degrees) of sudden expansion. The flow visualization of the meniscus development across the capillary valve supports the assumptions made for the present analysis. The measurements of burst rotational speeds for the capillary valves are in good agreement with the predictions by the simple expression except that those with a larger channel width and wider wedge angles are nearly 10% lower than the predicted values
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.