Plasmodium falciparum malaria cases in Africa represent over 90% of the global burden with Mali being amongst the 11 highest burden countries that account for 70% of this annual incidence. The persistence of P. falciparum despite massive global interventions is because of its genetic diversity that drives its ability to adapt to environmental changes, develop resistance to drugs, and evade the host immune system. Knowledge on P. falciparum genetic diversity across populations and intervention landscape is thus critical for the implementation of new strategies to eliminate malaria. This study assessed genetic variation with 12,177 high-quality SNPs from 830 Malian P. falciparum isolates collected between 2007 and 2017 from seven locations. The complexity of infections remained high, varied between sites, and showed a trend toward overall decreasing complexity over the decade. Though there was no significant substructure, allele frequencies varied geographically, partly driven by temporal variance in sampling, particularly for drug resistance and antigen loci. Thirty-two mutations in known drug resistance markers (pfcrt, pfdhps, pfdhfr, pfmdr1, pfmdr2, and pfk13) attained a frequency of at least 2% in the populations. SNPs within and around the major markers of resistance to quinolines (pfmdr1 and pfcrt) and antifolates (pfdhfr and pfdhps) varied temporally and geographically, with strong linkage disequilibrium and signatures of directional selection in the genome. These geo-temporal populations also differentiated at alleles in immune-related loci, including, protein E140, pfsurfin8, pfclag8, and pfceltos, as well as pftrap, which showed signatures of haplotype differentiation between populations. Several regions across the genomes, including five known drug resistance loci, showed signatures of differential positive selection. These results suggest that drugs and immune pressure are dominant selective forces against P. falciparum in Mali, but their effect on the parasite genome varies temporally and spatially. Interventions interacting with these genomic variants need to be routinely evaluated as malaria elimination strategies are implemented.
Genetic diversity of surface exposed and stage specific Plasmodium falciparum immunogenic proteins pose a major roadblock to developing an effective malaria vaccine with broad and long-lasting immunity. We conducted a prospective genetic analysis of candidate antigens (msp1, ama1, rh5, eba175, glurp, celtos, csp, lsa3, Pfsea, trap, conserved chrom3, hyp9, hyp10, phistb, surfin8.2, and surfin14.1) for malaria vaccine development on 2375 P. falciparum sequences from 16 African countries. We described signatures of balancing selection inferred from positive values of Tajima’s D for all antigens across all populations except for glurp. This could be as a result of immune selection on these antigens as positive Tajima’s D values mapped to regions with putative immune epitopes. A less diverse phistb antigen was characterised with a transmembrane domain, glycophosphatidyl anchors between the N and C- terminals, and surface epitopes that could be targets of immune recognition. This study demonstrates the value of population genetic and immunoinformatic analysis for identifying and characterising new putative vaccine candidates towards improving strain transcending immunity, and vaccine efficacy across all endemic populations.
Background Artemether/lumefantrine is the most commonly used artemisinin-based combination treatment (ACT) for malaria in sub-Saharan Africa. Drug resistance to ACT components is a major threat to malaria elimination efforts. Therefore, rigorous monitoring of drug efficacy is required for adequate management of malaria and to sustain the effectiveness of ACTs. Objectives This study identified and described genomic loci that correlate with differences in ex vivo responses of natural Plasmodium falciparum isolates from The Gambia to antimalarial drugs. Methods Natural P. falciparum isolates from The Gambia were assayed for IC50 responses to four antimalarial drugs (artemether, dihydroartemisinin, amodiaquine and lumefantrine). Genome-wide SNPs from 56 of these P. falciparum isolates were applied to mixed-model regression and network analyses to determine linked loci correlating with drug responses. Genomic regions of shared haplotypes and positive selection within and between Gambian and Cambodian P. falciparum isolates were mapped by identity-by-descent (IBD) analysis of 209 genomes. Results SNPs in 71 genes, mostly involved in stress and drug resistance mechanisms correlated with drug responses. Additionally, erythrocyte invasion and permeability loci, including merozoite surface proteins (Pfdblmsp, Pfsurfin), and high-molecular-weight rhoptry protein 2 (Pfrhops2) were correlated with responses to multiple drugs. Haplotypes of pfdblmsp2 and known drug resistance loci (pfaat1, pfcrt and pfdhfr) from The Gambia showed high IBD with those from Cambodia, indicating co-ancestry, with significant linkage disequilibrium between their alleles. Conclusions Multiple linked genic loci correlating with drug response phenotypes suggest a genomic backbone may be under selection by antimalarials. This calls for further analysis of molecular pathways to drug resistance in African P. falciparum.
Plasmodium malariae, a neglected human malaria parasite, contributes up to 10% of malaria infections in sub-Saharan Africa (sSA). Though P. malariae infection is considered clinically benign, it presents mostly as coinfections with the dominant P. falciparum. Completion of its reference genome has paved the way to further understand its biology and interactions with the human host, including responses to antimalarial interventions. We characterized 75 P. malariae isolates from seven endemic countries in sSA using highly divergent microsatellites. The P. malariae infections were highly diverse and five subpopulations from three ancestries (independent of origin of isolates) were determined. Sequences of 11 orthologous antimalarial resistance genes, identified low frequency single nucleotide polymorphisms (SNPs), strong linkage disequilibrium between loci that may be due to antimalarial drug selection. At least three sub-populations were detectable from a subset of denoised SNP data from mostly the mitochondrial cytochrome b coding region. This evidence of diversity and selection calls for including P. malariae in malaria genomic surveillance towards improved tools and strategies for malaria elimination.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.