Recycling of polymer composites has been explored in an attempt to reutilize materials. Several efforts have opted to address this subject from many perspectives including mechanical, chemical, and thermal recycling. Others have also delved into the self-healing materials to remedy this dilemma. However, few studies have delved into understanding the role of carbon nanotube (CNT) in self-healing based recycled polymer composites. Therefore, in this study, experimental and simulation tools were utilized to understand the recycling process when CNTs were incorporated within recycled polycaprolactone/epoxy composites. A polynomial regression model, as a facile approach, was established to simulate the process-property relationship, which is essential for the successful implementation of the future of manufacturing. It found that, by adding CNTs, a reduction in the determined degree of crystallization was induced which correlated with the obtained reduction in the modulus and toughness. Strategies for enhancing mechanical properties have been pointed out for future endeavors.
The potential for the material property improvement through the addition of carbon nanotubes (CNTs) in composite materials is often limited due to CNT agglomeration.In this work, Disperse Orange 3 (DO3) was investigated to determine its effectiveness in dispersing CNTs in a poly (lactic acid) (PLA) matrix. First, adsorption studies of DO3 onto CNTs were performed to determine the appropriate amount of DO3 to add so that the CNT surface will be nearly saturated with DO3 while limiting the excess DO3 dissolved in the polymer. The resultant improvements in the mechanical properties were determined via nanoindentation. Highly stable dispersion of CNTs in tetrahydrofuran with DO3 was observed 72 hours after sonication. Scanning electron microscopy confirmed that DO3-functionalized CNTs were able to separate and disperse well inside of the PLA matrix. Addition of DO3 to the nanocomposite resulted in an increase in the glass transition temperature and crystallinity of the composite due to the more effective dispersion of the nanofiller which serves as a nucleation agent. The CNTs treated with DO3 also increased the elastic modulus and hardness of the composite compared to neat PLA and untreated PLA-CNT composites. From this study, DO3 was demonstrated to be an effective dispersing agent in the solvent and the PLA matrix which allowed for enhanced crystallization and improved nanomechanical properties in the resultant composite.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.