A bacteriocin-producing (11,000 AU mL(-1)) strain was isolated from the rhizosphere of healthy Algerian plants Ononis angustissima Lam., and identified as Brevibacillus brevis strain GM100. The bacteriocin, called Bac-GM100, was purified to homogeneity from the culture supernatant, and, based on MALDI-TOF/MS analysis, was a monomer protein with a molecular mass of 4375.66 Da. The 21 N-terminal residues of Bac-GM100 displayed 65% homology with thurincin H from Bacillus thuringiensis. Bac-GM100 was extremely heat-stable (20 min at 120 °C), and was stable within a pH range of 3-10. It proved sensitive to various proteases, which demonstrated its protein nature. It was also found to display a bactericidal mode of action against gram-negative (Salmonella enteric ATCC 43972, Pseudomonas aeruginosa ATCC 49189, and Agrobacterium tumefaciens C58) and gram-positive (Enterococcus faecalis ENSAIA 631 and Staphylococcus aureus ATCC 6538) bacteria, and a fungistatic mode of action against the pathogenic fungus Candida tropicalis R2 CIP 203.
A bacteriocin-producing strain (9,000 AU/ml) was isolated from the rhizosphere of Algerian healthy plants Ononis angustissima Lam. and identified as Bacillus clausii strain GM17. The bacteriocin, called Bac-GM17, was purified from the culture supernatant after heat treatment, ammonium sulfate precipitation, Sephadex G-50 chromatography and Mono Q fast-performance liquid chromatography (FPLC). Based on matrix-assisted laser desorption ionization-time of flight mass spectrometry analysis, the purified Bac-GM17 is a monomer protein with a molecular mass of 5,158.11 Da. The N-terminal sequencing allowed for the straightforward identification of its first 20 residues, which were of pure bacteriocin. It also revealed that this bacteriocin contained a unique sequence, namely DWTCSKWSCLVCDDCSVELT, which suggests the identification of a novel compound. Bac-GM17 was extremely heat stable (20 min at 120 °C) and was stable within the pH range (3-9). It was found to be resistant to the proteolytic action of trypsin, pepsin, papain, pronase E, and proteinase K. It was also noted to display a bactericidal mode of action against Agrobacterium tumefaciens C58 and a fungistatic mode of action against Candida tropicalis R2 CIP203.
In the present work, five hundred and sixty-seven isolates of lactic acid bacteria were recovered from raw bee pollen grains. All isolates were screened for their antagonistic activity against both Gram-positive and Gram-negative pathogenic bacteria. Neutralized supernatants of 54 lactic acid bacteria (LAB) cultures from 216 active isolates inhibited the growth of indicator bacteria. They were phenotypically characterized, based on the fermentation of 39 carbohydrates. Using the simple matching coefficient and unweighted pair group algorithm with arithmetic averages (UPGMA), seven clusters with other two members were defined at the 79% similarity level. The following species were characterized: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Pediococcus acidilactici, Pediococcus pentosaceus, and unidentified lactobacilli. Phenotypic characteristics of major and minor clusters were also identified. Partial sequencing of the 16S rRNA gene of representative isolates from each cluster was performed, and ten strains were assigned to seven species: Lactobacillus plantarum, Lactobacillus fermentum, Lactococcus lactis, Lactobacillus ingluviei, Pediococcus pentosaceus, Lactobacillus acidipiscis and Weissella cibaria. The molecular method used failed to determine the exact taxonomic status of BH0900 and AH3133.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.