The present chapter contains the analysis of stress, analysis of strain and stress-strain relationship through particular sections. The theory of elasticity contains equilibrium equations relating to stresses, kinematic equations relating to the strains and displacements and the constitutive equations relating to the stresses and strains. Concept of normal and shear stresses, principal stress, plane stress, Mohr's circle, stress invariants and stress equilibrium relations are discussed in analysis of stress section while strain-displacement relationship for normal and shear strain, compatibility of strains are discussed in analysis of strain section through geometrical representations. Linear elasticity, generalized Hooke's law and stress-strain relations for triclinic, monoclinic, orthotropic, transversely isotropic, fiber-reinforced and isotropic materials with some important relations for elasticity are discussed.
The primary objective of this article is to investigate the behaviour of horizontally polarized shear (SH) wave propagation in piezoelectric composite structure consisting of functionally graded piezoelectric material layer imperfectly bonded to functionally graded porous piezoelectric material half-space. The linear form of functional gradedness varying continuously along with depth is considered in both functionally graded piezoelectric material layer and functionally graded porous piezoelectric material half-space. The interface of the composite structure is considered to be damaged mechanically and/or electrically. Wentzel–Kramers–Brillouin asymptotic approach is adopted to solve the coupled electromechanical field differential equations of both functionally graded piezoelectric material layer and functionally graded porous piezoelectric material half-space. An analytical treatment has been employed to determine the dispersion relations of propagating SH-wave for both electrically short and electrically open conditions, which further reduced to the pre-established and classical results as special case of the problem. The effect of various affecting parameters, namely, functional gradedness, wave number, mechanical/electrical imperfection parameters in the presence and absence of porosity on the phase velocity of SH-wave, has been reported through numerical computation and graphical demonstration. In addition, the variation of the coupled electromechanical factor with dimensionless wave number and cut-off frequency with different modes of propagation of wave for electrically short and electrically open cases has also been discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.