Background:
microRNAs are small non-coding RNAs which inhibit translational and
post-transcriptional processes whereas long non-coding RNAs are found to regulate both
transcriptional and post-transcriptional gene expression. Medicago truncatula is a well-known
model plant for studying legume biology and is also used as a forage crop. In spite of its
importance in nitrogen fixation and soil fertility improvement, little information is available about
Medicago non-coding RNAs that play important role in symbiosis.
Objective:
In this study we have tried to understand the role of Medicago ncRNAs in symbiosis
and regulation of transcription factors.
Methods:
We have identified novel miRNAs by computational methods considering various
parameters like length, MFEI, AU content, SSR signatures and tried to establish an interaction
model with their targets obtained through psRNATarget server.
Results:
149 novel miRNAs are predicted along with their 770 target proteins. We have also
shown that 51 of these novel miRNAs are targeting 282 lncRNAs.
Conclusion:
In this study role of Medicago miRNAs in the regulation of various transcription
factors are elucidated. Knowledge gained from this study will have a positive impact on the
nitrogen fixing ability of this important model plant, which in turn will improve the soil fertility.
Plants being sessile are always exposed to various stresses including biotic and abiotic stresses. Some of these stresses are genotoxic to cells causing DNA damage by forming lesions which include altered bases, cross-links, and breaking of DNA strands, which in turn hamper the genomic integrity. In order to survive through all these adverse conditions, plants have evolved different DNA repair mechanisms. As seen from the mammalian system and different human diseases, various microRNAs (miRNAs) can target the 3′-untranslated region of mRNAs that code for the proteins involved in DNA repair pathways. Since miRNAs play an important role in plant cells by regulating various metabolic pathways, it can also be possible that miRNAs play an important role in DNA repair pathways too. However, till date, only a handful of plant miRNAs have been identified to play important role in combating genotoxic stresses in plants. Limitation of information regarding involvement of miRNAs in DNA repair as well as in ROS scavenging prompted us to gather information about plant miRNAs specific for these tasks. This mini-review aims to present pertinent literature dealing with different genotoxic stresses that cause genome instability as well as plant specific responses to survive the damage. This is intertwined with the involvement of miRNAs in genotoxic stress in plants, challenges of applying miRNAs as a tool to combat DNA damage along with ways to overcome these challenges, and finally, the future prospective of these understudied aspects.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.