<span lang="EN-US">Many researches have been dedicated to develop the induction motor drive control strategy used on the railway traction applications. In this paper we propose to investigate and to improve the electric locomotives by using a Field Oriented Control (FOC) strategy of induction motor drive. This induction motor can be powered by a five-stage neutral point inverter controlled by sinusoidal pulse width modulation (SPWM) due to good quality for output voltage and The use of fast switches. Both conventional and improved locomotives are simulated in Matlab/Simulink and compared in open loop conditions and closed loop conditions using IP controller, in term of torque response, current harmonic distortions and rotor speed response.</span>
Widely used in industrial applications, the induction machine is the subject of many researches. Many are aimed at developing its performances, such torque ripples, current distortions or even rotor speed response, by using different control strategies or even replacing two level inverters in a field oriented control strategy with a new generation of inverters. This paper presents an advanced asynchronous machine field-oriented control strategy with a three level neutral point clamped inverter. The attractive performances of the field oriented control strategy using a three level neutral point clamped inverter are experimentally tested. Both conventional and new field-oriented control strategies are implemented in a dSPACE board induction machine. To highlight the advantages of the new control strategy, conventional and improved strategies are studied in open loop and closed loop conditions using integral proportional and proportional integral controllers, in term of current distortions, torque and speed response.
Direct Torque Control (DTC) has becoming the industrial standard for Induction Machine (IM) torque control by means of very simple control schemes. This paper presents a contribution for detailed comparison of Direct Torque Control strategies (Classical DTC, SVM-DTC and Fuzzy DTC) for Induction Machine. The performances of those various methodologies are evaluated and compared by simulation in terms of torque and current ripples, and transient response.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.