The self-controlled case series method is increasingly being used in pharmacoepidemiology, particularly in vaccine safety studies. This method is typically used to evaluate the association between a transient exposure and an acute event, using only cases. We present both parametric and semiparametric models using a motivating example on MMR vaccine and bleeding disorders. We briefly describe approaches for censoring events and a sequential version of the method for prospective surveillance of drug safety. The efficiency of the self-controlled case series method is compared to the that of cohort and case control studies. Some further extensions, to long or indefinite exposures and to bivariate counts, are described.
A new method is developed for analyzing case series data in situations where occurrence of the event censors, curtails, or otherwise affects post-event exposures. Unbiased estimating equations derived from the self-controlled case series model are adapted to allow for exposures whose occurrence or observation is influenced by the event. The method applies to transient point exposures and rare nonrecurrent events. Asymptotic efficiency is studied in some special cases. A computational scheme based on a pseudo-likelihood is proposed to make the computations feasible in complex models. Simulations, a validation study, and 2 applications are described.
The self-controlled case series method may be used to study the association between a time-varying exposure and a health event. It is based only on cases, and it controls for fixed confounders. Exposure and event histories are collected for each case over a predefined observation period. The method requires that observation periods should be independent of event times. This requirement is violated when events increase the mortality rate, since censoring of the observation periods is then event dependent. In this article, the case series method for rare nonrecurrent events is extended to remove this independence assumption, thus introducing an additional term in the likelihood that depends on the censoring process. In order to remain within the case series framework in which only cases are sampled, the model is reparameterized so that this additional term becomes estimable from the distribution of intervals from event to end of observation. The exposure effect of primary interest may be estimated unbiasedly. The age effect, however, takes on a new interpretation, incorporating the effect of censoring. The model may be fitted in standard loglinear modeling software; this yields conservative standard errors. We describe a detailed application to the study of antipsychotics and stroke. The estimates obtained from the standard case series model are shown to be biased when eventdependent observation periods are ignored. When they are allowed for, antipsychotic use remains strongly positively associated with stroke in patients with dementia, but not in patients without dementia. Two detailed simulation studies are included as Supplemental Material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.