Transplantations of various stem cells or their progeny have repeatedly improved cardiac performance in animal models of myocardial injury, however, the benefits observed in clinical trials have been generally less consistent. Some of the recognized challenges are poor engraftment of implanted cells and, in the case of human cardiomyocytes, functional immaturity and lack of electrical integration, leading to limited contribution to the heart’s contractile activity and increased arrhythmogenic risks. Advances in tissue and genetic engineering techniques are expected to improve the survival and integration of transplanted cells, and to support structural, functional, and bioenergetic recovery of the recipient hearts. Specifically, application of a prefabricated cardiac tissue patch to prevent dilation and to improve pumping efficiency of the infarcted heart offers a promising strategy for making stem cell therapy a clinical reality.
Objective
Neuromyelitis optica (NMO) is characterized by selective inflammation of the spinal cord and optic nerves but is distinct from multiple sclerosis (MS). Interferon (IFN)-β mitigates disease activity in MS, but is controversial in NMO, with a few reports of disease worsening after IFN-β therapy in this highly active disease. In systemic lupus erythematosus (SLE), IFNs adversely affect disease activity. This study examines for the first time whether serum IFN-α/β activity and IFN-β-induced responses in peripheral blood mononuclear cells (MNC) are abnormally elevated in NMO, as they are in SLE, but contrast to low levels in MS.
Methods
Serum type I IFN-α/β activity was measured by a previously validated bioassay of 3 IFN-stimulated genes (RT-PCR sensitivity, 0.1 U/ml) rather than ELISA, which has lower sensitivity and specificity for measuring serum IFNs. IFN responses in PBMNC were assessed by in vitro IFN-β-induced activation of phospho-tyrosine-STAT1 and phospho-serine-STAT1 transcription factors, and MxA proteins using Western blots.
Results
Serum IFN-α/β activity was highest in SLE patients, followed by healthy subjects and NMO, but was surprisingly low in therapy-naïve MS. In functional assays in vitro, IFN-β-induced high levels of P-S-STAT1 in NMO and SLE, but not in MS and controls. IFN-β-induced MxA protein levels were elevated in NMO and SLE compared to MS.
Conclusions
Serum IFN activity and IFN-β-induced responses in PBMNC are elevated in SLE and NMO patients versus MS. This argues for similarities in pathophysiology between NMO and SLE and provides an explanation for IFN-induced disease worsening in NMO.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.