Abstract-Software Defined Networking (SDN) has recently emerged to become one of the promising solutions for the future Internet. With the logical centralization of controllers and a global network overview, SDN brings us a chance to strengthen our network security. However, SDN also brings us a dangerous increase in potential threats. In this paper, we apply a deep learning approach for flow-based anomaly detection in an SDN environment. We build a Deep Neural Network (DNN) model for an intrusion detection system and train the model with the NSL-KDD Dataset. In this work, we just use six basic features (that can be easily obtained in an SDN environment) taken from the fortyone features of NSL-KDD Dataset. Through experiments, we confirm that the deep learning approach shows strong potential to be used for flow-based anomaly detection in SDN environments.
ArticleAbstract-We address the problem of frequency-selective channel estimation and symbol detection using superimposed training. The superimposed training consists of the sum of a known sequence and a data-dependent sequence that is unknown to the receiver. The data-dependent sequence cancels the effects of the unknown data on channel estimation. The performance of the proposed approach is shown to significantly outperform existing methods based on superimposed training (ST).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.