<span lang="EN-US">The impact of wildfires, even following the fire's extinguishment, continues to affect harmfully public health and prosperity. Wildfires are becoming increasingly frequent and severe, and make the world's biodiversity in a growing serious danger. The fires are responsible for negative economic consequences for individuals, corporations, and authorities. Researchers are developing new approaches for detecting and monitoring wildfires, that make use of advances in computer vision, machine learning, and remote sensing technologies. IoT sensors help to improve the efficiency of detecting active forest fires. In this paper, we propose a novel approach for predicting wildfires, based on machine learning. It uses a regression model that we train over NASA's fire information for resource management system (FIRMS) dataset to predict fire radiant power in megawatts. The analysis of the obtained simulation results (more than 99% in the R2 metric) shows that the ensemble learning model is an effective method for predicting wildfires using an IoT device equipped with several sensors that could potentially collect the same data as the FIRMS dataset, such as smart cameras or drones.</span>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.