Cybersecurity ventures expect that cyber-attack damage costs will rise to $11.5 billion in 2019 and that a business will fall victim to a cyber-attack every 14 seconds. Notice here that the time frame for such an event is seconds. With petabytes of data generated each day, this is a challenging task for traditional intrusion detection systems (IDSs). Protecting sensitive information is a major concern for both businesses and governments. Therefore, the need for a real-time, large-scale and effective IDS is a must. In this work, we present a cloud-based, fault tolerant, scalable and distributed IDS that uses Apache Spark Structured Streaming and its Machine Learning library (MLlib) to detect intrusions in real-time. To demonstrate the efficacy and effectivity of this system, we implement the proposed system within Microsoft Azure Cloud, as it provides both processing power and storage capabilities. A decision tree algorithm is used to predict the nature of incoming data. For this task, the use of the MAWILab dataset as a data source will give better insights about the system capabilities against cyber-attacks. The experimental results showed a 99.95% accuracy and more than 55,175 events per second were processed by the proposed system on a small cluster.
In this paper, we propose a method for solving a real‐world timetabling problem at Mandarine Academy. The primary motivation for this work is to provide an automated professional course scheduling tool to replace the time‐consuming task of manually creating timetables that are constantly incorrect. Following a review of both scientific literature and company requirements, a mathematical model of the problem is provided, which includes 18 constraints (hard/soft) and five objectives, two of which are competing. We test a handful of multi‐objective evolutionary algorithms (MOEA's) starting with the non‐dominated sorting genetic algorithm (NSGA II and NSGA III), the multi‐objective evolutionary algorithm based on decomposition (MOEA/D), the indicator‐based evolutionary algorithm and finally the strength Pareto evolutionary algorithm . Two custom genetic operators (mutation and crossover) are proposed and compared to conventional operators (PMX and swap mutation). To obtain elite configurations, a tuning phase involving all of the aforementioned algorithms is carried out. Experiments were divided by problem size, with three to five objectives tested. Experiments include the use of real‐world data from the company's catalog. This dataset was made available to the scientific community to serve as a testing ground for professional course scheduling, an underexploited field of scheduling. We discuss findings, including a comparison of each algorithm's performance using various metrics, as well as convergence graphs and population evolution.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.