We present for the first time a theoretical study of the structural stability and physical properties of the newly synthesized Ag2WS4. The study contributes to a better understanding of its electronic and vibrational properties, which is fundamental for the optimization of the technological applications of Ag2WS4. Calculations have been carried out by means of density-functional theory. The obtained results support that Ag2WS4 is thermodynamically, mechanically, and dynamically stable in a tetragonal layered structure, in good agreement with experiments. Calculations have also been used to obtain phonon frequencies, their assignments, and the Raman scattering spectrum. Furthermore, we show that Ag2WS4 has a brittle structure, that is governed by van der Waals interactions, which favors its exfoliation as a low-dimensional structure. Additionally, the results show that Ag2WS4 has a band gap of 2.02 eV with a favorable band-edge diagram for water splitting as well as for optoelectronic applications.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.