Age of Information (AoI) measures the freshness of the information at a remote location. AoI reflects the time that is elapsed since the generation of the packet by a transmitter. In this paper, we consider a remote monitoring problem (e.g., remote factory) in which a number of sensor nodes are transmitting time sensitive measurements to a remote monitoring site. We consider minimizing a metric that maintains a trade-off between minimizing the sum of the expected AoI of all sensors and minimizing an Ultra Reliable Low Latency Communication (URLLC) term. The URLLC term is considered to ensure that the probability the AoI of each sensor exceeds a predefined threshold is minimized. Moreover, we assume that sensors tolerate different threshold values and generate packets at different sizes. Motivated by the success of machine learning in solving large networking problems at low complexity, we develop a low complexity reinforcement learning based algorithm to solve the proposed formulation. We trained our algorithm using the stateof-the-art actor-critic algorithm over a set of public bandwidth traces. Simulation results show that the proposed algorithm outperforms the considered baselines in terms of minimizing the expected AoI and the threshold violation of each sensor.
In this paper, we consider a distributed reinforcement learning setting where agents are communicating with a central entity in a shared environment to maximize a global reward. A main challenge in this setting is that the randomness of the wireless channel perturbs each agent's model update while multiple agents' updates may cause interference when communicating under limited bandwidth. To address this issue, we propose a novel distributed reinforcement learning algorithm based on the alternating direction method of multipliers (ADMM) and "over air aggregation" using analog transmission scheme, referred to as A-RLADMM. Our algorithm incorporates the wireless channel into the formulation of the ADMM method, which enables agents to transmit each element of their updated models over the same channel using analog communication. Numerical experiments on a multi-agent collaborative navigation task show that our proposed algorithm significantly outperforms the digital communication baseline of A-RLADMM (D-RLADMM), the lazily aggregated policy gradient (RL-LAPG), as well as the analog and the digital communication versions of the vanilla FL, (A-FRL) and (D-FRL) respectively.
Split-learning (SL) has recently gained popularity due to its inherent privacy-preserving capabilities and ability to enable collaborative inference for devices with limited computational power. Standard SL algorithms assume an ideal underlying digital communication system and ignore the problem of scarce communication bandwidth. However, for a large number of agents, limited bandwidth resources, and time-varying communication channels, the communication bandwidth can become the bottleneck. To address this challenge, in this work, we propose a novel SL framework to solve the remote inference problem that introduces an additional layer at the agent side and constrains the choices of the weights and the biases to ensure over the air aggregation. Hence, the proposed approach maintains constant communication cost with respect to the number of agents enabling remote inference under limited bandwidth. Numerical results show that our proposed algorithm significantly outperforms the digital implementation in terms of communicationefficiency, especially as the number of agents grows large.
Today's intelligent applications can achieve high performance accuracy using machine learning (ML) techniques, such as deep neural networks (DNNs). Traditionally, in a remote DNN inference problem, an edge device transmits raw data to a remote node that performs the inference task. However, this may incur high transmission energy costs and puts data privacy at risk. In this paper, we propose a technique to reduce the total energy bill at the edge device by utilizing model compression and time-varying model split between the edge and remote nodes. The time-varying representation accounts for time-varying channels and can significantly reduce the total energy at the edge device while maintaining high accuracy (low loss). We implement our approach in an image classification task using the MNIST dataset, and the system environment is simulated as a trajectory navigation scenario to emulate different channel conditions. Numerical simulations show that our proposed solution results in minimal energy consumption and CO2 emission compared to the considered baselines while exhibiting robust performance across different channel conditions and bandwidth regime choices.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.