A new family of multitarget molecules able to interact with acetylcholinesterase (AChE) and butyrylcholinesterase (BuChE), as well as with monoamino oxidase (MAO) A and B, has been synthesized. Novel compounds (3-9) have been designed using a conjunctive approach that combines the benzylpiperidine moiety of the AChE inhibitor donepezil (1) and the indolyl propargylamino moiety of the MAO inhibitor N-[(5-benzyloxy-1-methyl-1H-indol-2-yl)methyl]-N-methylprop-2-yn-1-amine (2), connected through an oligomethylene linker. The most promising hybrid (5) is a potent inhibitor of both MAO-A (IC50=5.2±1.1 nM) and MAO-B (IC50=43±8.0 nM) and is a moderately potent inhibitor of AChE (IC50=0.35±0.01 μM) and BuChE (IC50=0.46±0.06 μM). Moreover, molecular modeling and kinetic studies support the dual binding site to AChE, which explains the inhibitory effect exerted on Aβ aggregation. Overall, the results suggest that the new compounds are promising multitarget drug candidates with potential impact for Alzheimer's disease therapy.
We report the synthesis, theoretical calculations, the
antioxidant,
anti-inflammatory, and neuroprotective properties, and the ability
to cross the blood–brain barrier (BBB) of (Z)-α-aryl and heteroaryl-N-alkyl nitrones as
potential agents for stroke treatment. The majority of nitrones compete
with DMSO for hydroxyl radicals, and most of them are potent lipoxygenase
inhibitors. Cell viability-related (MTT assay) studies clearly showed
that nitrones 1–3 and 10 give rise to significant neuroprotection. When compounds 1–11 were tested for necrotic cell death (LDH
release test) nitrones 1–3, 6, 7, and 9 proved to be neuroprotective
agents. In vitro evaluation of the BBB penetration of selected nitrones 1, 2, 10, and 11 using
the PAMPA-BBB assay showed that all of them cross the BBB. Permeable
quinoline nitrones 2 and 3 show potent combined
antioxidant and neuroprotective properties and, therefore, can be
considered as new lead compounds for further development in specific
tests for potential stroke treatment.
The therapy of complex neurodegenerative diseases requires the development of multitarget-directed drugs (MTDs). Novel indole derivatives with inhibitory activity towards acetyl/butyrylcholinesterases and monoamine oxidases A/B as well as the histamine H receptor (H3R) were obtained by optimization of the neuroprotectant ASS234 by incorporating generally accepted H3R pharmacophore motifs. These small-molecule hits demonstrated balanced activities at the targets, mostly in the nanomolar concentration range. Additional in vitro studies showed antioxidative neuroprotective effects as well as the ability to penetrate the blood-brain barrier. With this promising in vitro profile, contilisant (at 1 mg kg i.p.) also significantly improved lipopolysaccharide-induced cognitive deficits.
We describe herein the synthesis and neuroprotective capacity of an array of 31 compounds comprising quinolyloximes, quinolylhydrazones, quinolylimines, QNs, and related heterocyclic azolylnitrones. Neuronal cultures subjected to oxygen−glucose deprivation (OGD), as experimental model for ischemic conditions, were treated with our molecules at the onset of recovery period after OGD and showed that most of these QNs, but not the azo molecules, improved neuronal viability 24 h after recovery. Especially, QN (Z)-N-tert-butyl-1-(2-chloro-6-methoxyquinolin-3-yl)methanimine oxide (23) was shown as a very potent neuroprotective agent. Antioxidant analysis based on the ability of QN 23 to trap different types of toxic radical oxygenated species supported and confirmed its strong neuroprotective capacity. Finally, QN 23 showed also neuroprotection induction in two in vivo models of cerebral ischemia, decreasing neuronal death and reducing infarct size, allowing us to conclude that QN 23 can be considered as new lead-compound for ischemic stroke treatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.