We revisit the Taub-NUT solution of the Einstein equations without time periodicity condition, showing that the Misner string is still fully transparent for geodesics. In this case, analytic continuation can be carried out through both horizons leading to a Hausdorff spacetime without a central singularity, and thus geodesically complete. Furthermore, we show that, in spite of the presence of a region containing closed time-like curves, there are no closed causal {\em geodesics}. Thus, some longstanding obstructions to accept the Taub-NUT solution as physically relevant are removed.Comment: 9 pages revtex 4, Journal versio
We show that supercritically charged black holes with NUT provide a new setting for traversable wormholes. This does not require exotic matter, a price being the Misner string singularities. Without assuming time periodicity to make Misner strings unobservable, we show that, contrary to expectations, geodesics do not stop there. Moreover, since there is no central singularity the space-time turns out to be geodesically complete. Another unpleasant feature of spacetimes with NUTs is the presence of regions where the azimuthal angle $\varphi$ becomes timelike, signalling the appearance of closed timelike curves (CTCs). We show that among them there are no closed timelike or null geodesics, so the freely falling observers should not encounter causality violations. Considering worldlines of charged particles, we find that, although these can become closed in the vicinity of the wormhole throat for large enough charge-to-mass ratio, the non-causal orbits are still disconnected from the distant zones. All these findings support our feeling that wormholes with NUTs deserve to be taken seriously. Integrating the geodesic equations completely, we demonstrate the existence of timelike and null geodesics connecting two asymptotic regions of the wormhole, such that the tidal forces in the throat are reasonably small. We discuss bounds on the NUT charge which follow from the Schwinger pair creation and ionization thresholds and speculate that such NUT wormholes could be present in some galactic centers.Comment: Journal version. New references added, discussion part slightly modifie
We investigate the motion of electrically charged test particles in spacetimes with closed timelike curves, a subset of the black hole or wormhole Reissner-Nordström-NUT spacetimes without periodic identification of time. We show that, while in the wormhole case there are closed worldlines inside a potential well, the wordlines of initially distant charged observers moving under the action of the Lorentz force can never close or self-intersect. This means that for these observers causality is preserved, which is an instance of our weak chronology protection criterion. *
The time delay of strong lensing is computed in the framework of the Einstein-Straus solution. The theory is compared to the observational bound on the time delay of the lens SDSS J1004+4112.Comment: 20 pages, 4 tables, 1 figur
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.