Crowdsourcing is emerging as a powerful paradigm to help perform a wide range of tedious tasks in various enterprise applications. As such applications become more complex, crowdsourcing systems often require the collaboration of several experts connected through professional/social networks and organized in various teams. For instance, a well-known car manufacturer asked fans to contribute ideas for the kinds of technologies that should be incorporated into one of its cars. For that purpose, fans needed to collaborate and form teams competing with each others to come up with the best ideas. However, once teams are formed, each one would like to provide the best solution and treat that solution as a “trade secret,” hence preventing any data leak to its competitors (i.e., the other teams). In this article, we propose a data leak--aware crowdsourcing system called
SocialCrowd
. We introduce a clustering algorithm that uses social relationships between crowd workers to discover all possible teams while avoiding interteam data leakage. We also define a ranking mechanism to select the “best” team configurations. Our mechanism is based on the semiring approach defined in the area of soft constraints programming. Finally, we present experiments to assess the efficiency of the proposed approach.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.