The recent corona virus disease (COVID-19) pandemic has brought the issues of technological deficiencies and challenges of security and privacy, validating and maintaining anonymity, user control over records while fully utilizing the available records etc., that can be encountered in an emergency or pandemic condition. Blockchain technology has evolved as a promising solution in conditions that necessitate immutability, record integrity, and proper records authentication. Blockchain can effectively resolve the technical barriers and effectively utilize the available resources and infrastructure in pandemic situations like the current COVID-19. This paper provides an extensive review of various possible use cases of blockchain and available solutions for protection against the COVID-19 like situation. It gives an insight into the benefits and shortcomings of available solutions. It further provides the issues and challenges of adopting blockchain in a situation like COVID-19 and suggest future directions that can offer a platform for further improved and better solutions.
Energy demand is increasing rapidly due to rapid growth and industrialization. It is becoming more and more complex to manage generation and distribution due to the diversification of energy sources to minimize carbon emissions. Smart grids manage reliable power generation and distribution efficiently and cater to a large geographical area and population, but their centralized structure makes them vulnerable. Cybersecurity threats have become a significant concern with these systems’ increasing complexity and connectivity. Further transmission losses and its vulnerability to the single point of failure (SPOF) are also major concerns. Microgrids are becoming an alternative to large, centralized smart grids that can be managed locally with fewer user bases and are safe from SPOF. Microgrids cater to small geographical areas and populations that can be easily managed at the local level and utilized for different sources of energy, like renewable energy. A small group of consumers and producers are involved, but microgrids can also be connected with smart grids if required to exchange the excess energy. Still, these are also vulnerable to cybersecurity threats, as in the case of smart grids, and lack trust due to their decentralized nature without any trusted third party. Blockchain (BC) technology can address the trust and cybersecurity challenges in the energy sector. This article proposes a framework for implementing a BC-based microgrid system for managing all the aspects of a microgrid system, including peer-to-peer (P2P) energy trading, Renewable Energy Certificate (REC), and decentralized energy trading, that can be utilized in the case of Saudi Arabia. It can integrate cybersecurity standards and protocols, as well as the utilization of smart contracts, for more secure and reliable energy generation and distribution with transparency.
The Internet of Things (IoT) and blockchain (BC) are reliable technologies widely employed in various contexts. IoT devices have a lot of potential for data sensing and recording without human intervention, but they also have processing and security issues. Due to their limited computing power, IoT devices cannot use specialized cryptographic security mechanisms. There are various challenges when using traditional cryptographic techniques to transport and store medical records securely. The general public’s health depends on having an electronic health record (EHR) system that is current. In the era of e-health and m-health, problems with integrating data from various EHRs, preserving data interoperability, and ensuring that all data access is in the patient’s hands are all obstacles to creating a dependable EHR system. If health records get into the wrong hands, they could endanger the lives of patients and their right to privacy. BC technology has become a potent tool for ensuring recorded data’s immutability, validity, and confidentiality while enabling decentralized storage. This study focuses on EHR and other types of e-healthcare, evaluating the advantages of complementary technologies and the underlying functional principles. The major BC consensus mechanisms for BC-based EHR systems are analyzed in this study. It also examines several IoT-EHR frameworks’ current infrastructures. A breakdown of BC integration’s benefits with the IoT-EHR framework is also offered. A BC-based IoT-EHR architecture has been developed to enable the automated sensing of patient records and to store and retrieve these records in a secure and reliable environment. Finally, we conduct a security study to demonstrate the security of our suggested EHR framework.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.