T cells engineered to express T cell receptors (TCRs) specific for tumor antigens can drive cancer regression. The first TCRs used in cancer gene therapy, DMF4 and DMF5, recognize two structurally distinct peptide epitopes of the melanoma-associated MART-1/Melan-A protein, both presented by the class I MHC protein HLA-A*0201. To help understand the mechanisms of TCR cross-reactivity and provide a foundation for the further development of immunotherapy, we determined the crystallographic structures of DMF4 and DMF5 in complex with both of the MART-1/Melan-A epitopes. The two TCRs use different mechanisms to accommodate the two ligands. Whereas DMF4 binds the two with a different orientation, altering its position over the peptide/MHC, DMF5 binds them both identically. The simpler mode of cross-reactivity by DMF5 is associated with higher affinity towards both ligands, consistent with the superior functional avidity of DMF5. More generally, the observation of two diverging mechanisms of cross-reactivity with the same antigens and the finding that TCR binding orientation can be determined by peptide alone extend our understanding of the mechanisms underlying TCR cross-reactivity.
T cell receptors (TCRs) are key to antigen-specific immunity and are increasingly being explored as therapeutics, most visibly in cancer immunotherapy. As TCRs typically possess only low-to-moderate affinity for their peptide/MHC (pMHC) ligands, there is a recognized need to develop affinity-enhanced TCR variants. Previous in vitro engineering efforts have yielded remarkable improvements in TCR affinity, yet concerns exist about the maintenance of peptide specificity and the biological impacts of ultra-high affinity. As opposed to in vitro engineering, computational design can directly address these issues, in theory permitting the rational control of peptide specificity together with relatively controlled increments in affinity. Here we explored the efficacy of computational design with the clinically relevant TCR DMF5, which recognizes nonameric and decameric epitopes from the melanoma-associated Melan-A/MART-1 protein presented by the class I MHC HLA-A2. We tested multiple mutations selected by flexible and rigid modeling protocols, assessed impacts on affinity and specificity, and utilized the data to examine and improve algorithmic performance. We identified multiple mutations that improved binding affinity, and characterized the structure, affinity, and binding kinetics of a previously reported double mutant that exhibits an impressive 400-fold affinity improvement for the decameric pMHC ligand without detectable binding to non-cognate ligands. The structure of this high affinity mutant indicated very little conformational consequences and emphasized the high fidelity of our modeling procedure. Overall, our work showcases the capability of computational design to generate TCRs with improved pMHC affinities while explicitly accounting for peptide specificity, as well as its potential for generating TCRs with customized antigen targeting capabilities.
T cells use the αβ T cell receptor (TCR) to bind peptides presented by major histocompatibility complex proteins (pMHC) on antigen presenting cells. Formation of a TCR-pMHC complex initiates T cell signaling via a poorly understood process, potentially involving changes in oligomeric state, altered interactions with CD3 subunits, and mechanical stress. These mechanisms could be facilitated by binding-induced changes in the TCR, but the nature and extent of any such alterations are unclear. Using hydrogen/deuterium exchange, we demonstrate that ligation globally rigidifies the TCR, which via entropic and packing effects will promote associations with neighboring proteins and enhance the stability of existing complexes. TCR regions implicated in lateral associations and signaling are particularly affected. Computational modeling demonstrated a high degree of dynamic coupling between the TCR constant and variable domains that is dampened upon ligation. These results raise the possibility that TCR triggering could involve a dynamically driven, allosteric mechanism.
Background: The molecular principles governing T-cell specificity are poorly understood.Results: High affinity binding of a melanoma-specific T-cell receptor (TCR) is mediated through new MHC contacts and distinct thermodynamics.Conclusion: A novel thermodynamic mechanism upholds TCR-peptide specificity.Significance: TCRs can maintain peptide specificity using a mechanism that may enable widespread, safe enhancement of TCR binding affinity in therapeutic applications.
Background: Modification of the MART-1 27-35 tumor antigen to improve MHC binding severely curtails immunogenicity with minimal structural alterations. Results: Modification enhances the flexibility of the peptide and MHC. Conclusion: Dynamical consequences of peptide modification contribute to the loss in antigenicity. Significance: Potential dynamical consequences should be considered in the design of peptide-based vaccines and may underlie aspects of T cell specificity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.