AIMTo investigate the prospective importance of serum micro (mi)RNAs (miR-125b, miR-138b, miR-1269, miR-214-5p, miR-494, miR375 and miR-145) as early biomarkers for the diagnosis of hepatitis C virus (HCV)-related hepatocellular carcinoma (HCC).METHODSTwo-hundred and fifty HCV4a patients, 224 HCV4a-HCC patients, and 84 healthy controls were enrolled in the study. Expression levels of miR214-5p, miR-125b, miR-1269 and miR-375 were quantified using quantitative real-time PCR.RESULTSExpression of the selected miRNAs in serum was significantly lower in HCC patients than in the healthy controls, except for miR-1269 and miR-494. There was a significant difference between HCC and HCV patients, in particular for HCC and late stage fibrosis, rather than HCV patients and early fibrosis. It is obvious that miR-1269 was significantly upregulated in HCC cases compared to hepatic fibrosis cases. Each miRNA can show HCC progression. Multivariate logistic regression analysis indicated that the tested panel of miRNAs (miR214-5p, miR-125b, miR-1269 and miR-375) represent accurate and specific indictors of HCC development.CONCLUSIONThis study presents a panel of miRNAs with strong power as putative diagnostic and prognostic biomarkers for HCV-induced HCC. Moreover, miR-214-5p and miR-1269 could be considered as early biomarkers for tracking the progress of liver fibrosis to HCC.
BACKGROUNDNonalcoholic steatohepatitis-related cirrhosis is one of the liver complications in type 2 diabetes mellitus (T2DM) and reported to be a risk factor for developing hepatocellular carcinoma (HCC). A reliable screening biomarker of liver cirrhosis (LC) and HCC among T2DM patients is important to reduce the morbidity and mortality of this disease. MicroRNA (miRNA) is considered a key player in HCC and T2DM, and it might be a hidden culprit in diabetes-associated HCC, making it a promising reliable prognostic tool.AIMTo investigate the signature of serum miRNAs as early biomarkers for the screening of HCC among diabetic patients.METHODSExpression profiles of miRNAs in serum samples of diabetic LC and diabetic HCC patients were assessed using Illumina sequencing; then, RT-qPCR was used to validate significantly altered miRNAs between the two groups. Candidate miRNAs were tested in serum samples of 200 T2DM patients, 270 LC patients, 200 HCC patients, and 225 healthy control subjects. Additionally, receiver operating characteristic (ROC) analysis, with area under the curve (AUC), was performed to assess the diagnostic performance of the screened miRNAs for discriminating HCC from LC and nonmalignant patients (LC + T2DM).RESULTSExpression of the sequenced miRNAs in serum was different in HCC vs LC-positive T2DM patients. Two miRNAs (miR-34a, miR-221) were significantly up-regulated and five miRNAs (miR-16, miR-23-3p, miR-122-5p, miR-198, miR-199a-3p) were significantly down-regulated in HCC compared to LC patients. Analysis of ROC curve demonstrated that the combination of these seven miRNAs can be used as a reliable biomarker for detection of HCC in diabetic patients, as it could identify HCC with high diagnostic accuracy in diabetic LC patients (AUC = 0.993) and in diabetic nonmalignant patients (AUC = 0.961).CONCLUSIONThis study validates a panel of serum miRNAs that can be used as a reliable noninvasive screening biomarker of HCC among T2DM cirrhotic and noncirrhotic patients. The study recommends further research to shed light on a possible role of c-Met in T2DM-associated HCC via the miRNA regulatory pathway.
BACKGROUND:HCV infection and its complications are among the leading public health challenges; the emergence of drug-resistant variants are expected to be a major problem. A novel combinatorial small interfering RNA (siRNA) could be a novel triple therapy that could be suitable for genotype 4. Although HCV is a hepatotropic virus, there is reliable evidence about its replication in peripheral blood mononuclear cells (PBMC) of chronically infected patients; these cells act as an extra-hepatic reservoir for viral recurrence and persistence. The patients with HCV-RNA in PBMC showed a significantly lower response to therapy that supports to be one of the factors influencing therapeutic response. Almost all regions of HCV show potential for siRNA target with relative efficiencies of individual siRNA sequences.AIM:This study aims to test the efficacy of siRNA against HCV-4 replication in PBMC in vitro, to introduce an alternative therapeutic option for HCV-4 suitable to eradicate it from both hepatic and extra-hepatic reservoirs.METHODS:Efficacy of synthesised siRNA molecule that targets 5/UTR of domain IIIC within IRES of HCV RNA to eradicate HCV intra-PBMC in vitro was tested and compared with IFN/RBV in vitro, by using both qRT-PCR and western blot. Sixty genotype-4 chronic HCV patients who are naïve for any HCV treatment were enrolled and tested for the presence of HCV intra-PBMC using qRT-PCR before and after siRNA treatment in vitro.RESULTS:Real-time PCR analysis showed a significant reduction of HCV RNA levels after 24hr post-HCV-positive-PBMCs treatment by siRNA with cell vitality reached up to 98%. Besides a complete inhibition of NS5A viral protein expression, that is functionally essential for viral assembly, replication and egress.CONCLUSION:So, Targeting HCV infection using RNA interference technology might be a reliable therapeutic option for chronic HCV patients with HCV minus strand within PBMCs.
Hepatocellular carcinoma (HCC) is a multistep heterogeneous disease as it is related to the risk factors such as HBV and HCV infections, including uncontrolled hepatocyte proliferation, invasion of the neighboring tissue and metastasize to distant tissues. There are several factors affecting the course of HCC among the patients such as oncogenes and tumor suppressor genes. Recently, molecular mechanisms have cleared some of the underlying mechanisms of carcinogenesis, especially the microRNAs, the upstream regulators of a large number of critical genes. Mature miRNAs found to be mounted into RISC, which helps in recognizing the complementary binding sites in the 3′ untranslated regions of target genes. That binding causes the degradation of/or inhibition of translation of mRNAs. miRNAs have been reported to be deregulated in human cancers demonstrating their double-edged role as a tumor suppressor and as an oncogene. miRNA deregulation is involved in modulating signal pathways of cellular transformation of a normal cell into a cancer cell. miRNAs have been reported to be associated with the processes of carcinogenesis including inflammation, cell-cycle, differentiation, apoptosis, and metastasis. miRNAs have been considered as potential biomarkers in HCC as their development has been attributed to the deregulation of many genes owing to abnormal expression of miRNAs. Herein, the current chapter will focus on studying the regulation of miRNAs in HCC-related HCV patients.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.