The differentiation of the distinct phenotypes of macrophages
is
essential for monitoring the stage of inflammatory diseases for accurate
diagnosis and treatment. Recent studies revealed that the level of
hypochlorite (OCl–) varies from activated M1 macrophages
(killing pathogens) to M2 (resolution of inflammation) during inflammation.
Thus, we developed a simple and efficient fluorescent probe for discriminating
M1 from M0 and M2. Herein, fluorescent-based imaging is applied as
an alternative to immunohistochemistry, which is challenging due to
the tedious process and high cost. We developed a hypochlorite-specific
probe PMS-T to differentiate M1 and M2, employing a metabolism-oriented
live-cell distinction. This probe enables the detection of inflammatory
rheumatoid arthritis in an ex vivo mouse model. Thus,
it can be a potential chemical tool for monitoring inflammatory diseases,
including rheumatoid arthritis, that may overcome the existing barriers
of immunohistochemistry.
A unique highly water-soluble ICT-based fluorescent probe is developed for efficient detection and discrimination of reactive monocarbonyl formaldehyde (FA) from dicarbonyl methylglyoxal (MGO)/glyoxal (GO) by modulating the ICT process that...
The human innate immune system eliminates the invading pathogens through phagocytosis. The first step of this process is activating the nicotinamide adenine dinucleotide phosphate oxidase (Nox2) that utilizes NADPH to...
Nanoscale assembly of ultrasmall metal nanoclusters (MNCs) by means of molecular forces has proven to be a powerful strategy to engineer their molecule-like properties in multiscale dimensions. By leveraging depletion attraction as the guiding force, herein, we demonstrate the formation of kinetically trapped NCs assemblies with enhanced photoluminescence (PL) and excited state lifetimes and extend the principle to cluster impregnated cationic nanogels, nonluminescent Au(I)−thiolate complexes, and weakly luminescent CuNCs. We further demonstrate a thermal energy driven kinetic barrier breaking process to isolate these assemblies. These isolated assemblies are thermodynamically stable, built from a strong network among several discrete, ultrasmall AuNCs and exhibit several unusual properties such as high stability in various pH, strong PL, microsecond lifetimes, large Stocks shifts, and higher accumulation in the lysosome of cancer cells. We anticipate our strategy may find wider use in creating a large variety of MNC-based assemblies with many unforeseen arrangements, properties, and applications.
This review explains various strategies for developing fluorescent probes to detect reactive carbonyl species (RCS). There are several mono and diacarbonyls among 30 varieties of reactive carbonyl species (RCSs) so far discovered, which play pivotal roles in pathological processes such as cancer, neurodegenerative diseases, cardiovascular disease, renal failure, and diabetes mellitus. These RCSs play essential roles in maintaining ion channel regulation, cellular signaling pathways, and metabolisms. Among RCSs, carbon monoxide (CO) is also utilized for its cardioprotective, anti-inflammatory, and anti-apoptotic effects. Fluorescence-based non-invasive optical tools have come out as one of the promising methods for analyzing the concentrations and co-localizations of these small metabolites. There has been a tremendous eruption in developing fluorescent probes for selective detection of specific RCSs within cellular and aqueous environments due to their high sensitivity, high spatial and temporal resolution of fluorescence imaging. Fluorescence-based sensing mechanisms such as intramolecular charge transfer (ICT), photoinduced electron transfer (PeT), excited-state intramolecular proton transfer (ESIPT), and fluorescence resonance energy transfer (FRET) are described. In particular, probes for dicarbonyls such as methylglyoxal (MGO), malondialdehyde (MDA), along with monocarbonyls that include formaldehyde (FA), carbon monoxide (CO) and phosgene are discussed. One of the most exciting advances in this review is the summary of fluorescent probes of dicarbonyl compounds.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.