Communicated by R. WiegandThis paper establishes necessary and sufficient conditions for a bi-amalgamation to inherit the arithmetical property, with applications on the weak global dimension and transfer of the semihereditary property. The new results compare to previous works carried on various settings of duplications and amalgamations, and capitalize on recent results on bi-amalgamations. All results are backed with new and illustrative examples arising as bi-amalgamations.
In this paper, we investigate the transfer of the notions of pm-rings, rings of finite character and h-local rings to trivial ring extensions of rings by modules, amalgamations of rings along ideals and pullbacks. Our aim is to provide new classes of commutative rings satisfying these properties and our results generate new families of examples of rings for which the finite character and semi-local properties are equivalents.
In this paper we extend the notion of almost valuation and almost Bézout domains to arbitrary commutative rings, and we investigate the transfer of these properties to trivial ring extensions and amalgamated algebras along an ideal. Our aim is to provide new classes of commutative rings satisfying these properties. As an immediate consequence, we show the failure of Anderson-Zafrullah's theorem on the integral closure of an almost valuation domain beyond the context of integral domains.
Let [Formula: see text] be a commutative ring with [Formula: see text]. Let [Formula: see text] be a positive integer. A proper ideal [Formula: see text] of [Formula: see text] is called an n-absorbing ideal (respectively, a strongly n-absorbing ideal) of [Formula: see text] as in [D. F. Anderson and A. Badawi, On [Formula: see text]-absorbing ideals of commutative rings, Comm. Algebra 39 (2011) 1646–1672] if [Formula: see text] and [Formula: see text], then there are [Formula: see text] of the [Formula: see text]’s whose product is in [Formula: see text] (respectively, if whenever [Formula: see text] for ideals [Formula: see text] of [Formula: see text], then the product of some [Formula: see text] of the [Formula: see text]s is contained in [Formula: see text]). The concept of [Formula: see text]-absorbing ideals is a generalization of the concept of prime ideals (note that a prime ideal of [Formula: see text] is a 1-absorbing ideal of [Formula: see text]). Let [Formula: see text] be a ring homomorphism and let [Formula: see text] be an ideal of [Formula: see text] This paper investigates the [Formula: see text]-absorbing and strongly [Formula: see text]-absorbing ideals in the amalgamation of [Formula: see text] with [Formula: see text] along [Formula: see text] with respect [Formula: see text] denoted by [Formula: see text] The obtained results generate new original classes of [Formula: see text]-absorbing and strongly [Formula: see text]-absorbing ideals.
A ring R has the (A)-property (resp., strong (A)-property) if every finitely generated ideal of R consisting entirely of zero divisors (resp., every finitely generated ideal of R generated by a finite number of zero-divisors elements of R) has a nonzero annihilator. The class of commutative rings with property (A) is quite large; for example, Noetherian rings, rings whose prime ideals are maximal, the polynomial ring R[x] and rings whose total ring of quotients are von Neumann regular. Let f : A → B be a ring homomorphism and J be an ideal of B. In this paper, we investigate when the (A)-property and strong (A)-property are satisfied by the amalgamation of rings denoted by A ⋈fJ, introduced by D'Anna, Finocchiaro and Fontana in [3]. Our aim is to construct new original classes of (A)-rings that are not strong (A)-rings, (A)-rings that are not Noetherian and (A)-rings whose total ring of quotients are not Von Neumann regular rings.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.